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Abstract Analysis and visualization of eye movement data from eye tracking stud-
ies typically take into account gazes, fixations, and saccades of both eyes filtered and
fused into a combined eye. Although this is a valid strategy, we argue that it is also
worth investigating low-level eye tracking data prior to high-level analysis, because
today’s eye tracking systems measure and infer data from both eyes separately. In
this work, we present an approach that supports visual analysis and cleansing of
low-level time-varying data for eye tracking experiments. The visualization helps
researchers get insights into the quality of the data in terms of its uncertainty, or
reliability. We discuss uncertainty originating from eye tracking, and how to reveal
it for visualization, using a comparative approach for disagreement between plots,
and a density-based approach for accuracy in volume rendering. Finally, we illus-
trate the usefulness of our approach by applying it to eye movement data recorded
with two state-of-the-art eye trackers.

1 Introduction

We start earlier than the typical process of eye tracking analysis and visualization,
and argue that a separate visualization of low-level time-varying data can help ex-
plore the eye movements regarding reliability. Due to the wide variety of eye track-
ing experiments we introduce a generic reference workflow (Section 3). Our con-
tributions are a discussion of how we can model uncertainty in the context of eye
tracking (Section 4), a cleansing technique for time-series oriented eye tracking data
(Section 5), and a visualization technique that reveals uncertainty of the left, right,
and combined eyes (Section 6).
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We demonstrate our cleansing approach and visualization technique by apply-
ing it to eye tracking data from previous eye tracking studies conducted with Tobii
T60XL and SMI RED250 eye tracking devices (Section 8). As a major outcome,
we find differences over time between left, right, and combined eyes while visually
inferring credibility of the recorded data.

Furthermore, we provide our implementation under the terms of the MIT-License
(Section 7).

2 Related Work

Much of the previous related work on eye tracking, data cleansing, and uncertainty
occurs within isolated domains.

Eye Tracking Hardware: Singh and Singh [29] and Al-Rahayfeh and Faezipour
[3] provide reviews of anatomical and technical aspects of eye tracking in general,
which are used for discussion later on.

Eye Tracking Quality: Holmqvist et al. [18] note that standardized metrics
would be of great help when assessing eye tracking data quality. They further ar-
gue that fixation filters and correlation with areas of interest may actually hide er-
rors. Netzel et al. [23] increase fixation data quality through manual annotation of
fixations. To our knowledge, it is much more common to enhance study quality by
reducing measurement errors introduced by sampling frequency [4] or user move-
ment [5, 12] than communicating uncertainty present in recorded data. In contrast,
we specifically show the reliability of the data as a basis for user-controlled im-
provements of the data quality.

Eye Tracking Visualization: Eye movements recorded during eye tracking stud-
ies are typically analyzed and visualized by temporal aggregation like in attention
maps [22]. While this allows us to derive hot spots [10] of visual attention, we
cannot analyze time-varying patterns. If gaze plots [13] are used, the time-varying
behavior is explicitly encoded in the visual representation, but for long-lasting tasks
and a larger number of study participants, the amount of visual clutter increases,
making such a visualization difficult to read. Many visualization techniques have
already been developed to analyze eye movement data for patterns [9], but most of
them only take aggregated eye movements into account. Hence, we base our work
on simple line plots, scarf plots [25], and space-time cubes [21]. We furthermore
focus on including uncertainty visualization, which has largely been ignored in eye
tracking visualization so far.

Time-Series Visualization: Eye tracking data is sampled and time-dependent,
so we would like to point out a variety of techniques to visualize different aspects of
time [2]. Stacking representations of data were previously used by Shahar et al. in
their tool called KNAVE-II [28] in the clinical domain with a focus on semantic nav-
igation. VisuExplore [26] and CareCruiser [15] also use stacked representations of
time series while focusing on medical use cases and structure of patient data. Beard
et al. [7] describe a system to explore spatial and temporal patterns of sensor data,
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Fig. 1 Reference workflow for eye tracking experiments. Experiments are designed and executed
to gain raw recordings, which can be cleansed and analyzed to obtain a result. The final results of
the study are influenced also by how the cleansing was performed.

while dealing with uncertainty of missing data to some extent. We transfer the idea
of stacked representations to eye tracking by including specialized representations
for eye tracking data.

Uncertainty Visualization: We apply a rationale by Skeels et al. [30] to eye
tracking, stating that visualizing uncertainty could help make better decisions. Fur-
thermore, we base our discussion on a review of uncertainty visualization by Brodlie
et al. [11]. We distinguish between an accuracy-based and a comparative approach
in terms of uncertainty.

Data Cleansing: Rahm and Do [24] classify data quality problems for data
cleansing in the data warehouse domain. Their definition of single-source and multi-
source problems transfers well to our work. Kandel et al. [20] describe a technique
to interactively infer mapping functions from manipulation of data, but they do not
deal with sequential, time-varying data. Gschwandtner et al. [16] propose design
principles and techniques to exploit time specifics for data cleansing, but they do
not visualize or propagate different facets of uncertainty originating from a process-
ing pipeline, such as eye tracking.

3 Experiment Workflow

Before discussing uncertainty in eye tracking, we elaborate on the integration of
our tool into a reference experiment workflow, shown in Figure 1: An eye tracking
experiment is designed by a researcher and executed to obtain a recording of time-
varying data for each participant. It may be very hard to analyze raw recordings,
because recordings may require segmentation and re-ordering, contain recognition
errors, and originate from multiple eye trackers. Therefore, proper and comprehen-
sible data cleansing prior to analytics can reduce data quality issues by identifying
corrupt data and making data consistent. Our approach to data cleansing is iterative
and based on visual feedback. Additionally, a description of how the cleansing was
done should be incorporated into the final results, because cleansing has the same
potential to hide errors, as fixation filters do [18].

Considering the range of available eye trackers and different types of experi-
ments, we made as few assumptions as possible about hardware and use cases to
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Fig. 2 (a) Classification of uncertainty and (b) eye tracking pipeline, introducing and propagating
different kinds of uncertainty. Each eye is recognized individually and then fused to a combined
eye. Subsequently, all data is synchronized and emitted as samples.

keep our approach generic. We assume that data is a time-dependent series of sam-
ples and for implementation reasons, we limit ourselves to stationary eye tracking
setups using static images and video stimuli. We tested a maximum duration of
about half an hour per recording, even though our implementation should perform
well beyond that.

4 Modeling Uncertainty in Eye Tracking Data

Our model is based on one question: What reveals flawed data and separates it from
trustworthy data, and thus is crucial for decision making during cleansing? This
question leads to the topic of uncertainty, which introduces data analysis challenges
that we will discuss in the following sections. We adhere to the term uncertainty of
the visualization community. Other communities prefer data confidence, quality, or
trust.

4.1 Background

We adopt a classification by Skeels et al. [30] to discuss different aspects of uncer-
tainty in the context of eye tracking. Their classification distinguishes between mea-
surement, completeness, inference, disagreement, and credibility (see Figure 2a).
Measurement uncertainty describes accuracy and precision. Completeness uncer-
tainty describes aggregation, missing values, and sampling. Inference uncertainty
describes modeling, prediction, and retrodiction. The former three levels are stacked
because uncertainty propagates from bottom to top (right part of Figure 2a), whereas
disagreement and credibility on the left span all three levels as derived characteris-
tics (left part of Figure 2a).

We apply this classification to a simplified eye tracking pipeline, condensed from
related work [3,27,29,32] and depicted in Figure 2b to illustrate sources of uncer-
tainty originating from eye tracking. The process of optical eye tracking starts with
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Table 1 Measurement-related technical data extracted from vendor documentation, listing upper
bounds in case of doubt.

Device Sampling Rate [Hz] Accuracy [°] Latency [ms]
Tobii

T60 60 0.5 33
T120 120 0.5 33
SMI

REDn Scientific 30 or 60 0.5 25
RED 250 mobile 60, 120, or 250 0.4 8

RED 500 500 0.4 4

Eye Tracking Glasses 2.0 30 or 60 0.5 measured

light hitting a raster of sensor pixels, aggregated to a sequence of images, form-
ing a video. This process introduces measurement uncertainty, because of physical
properties such as lenses, pixel density, and signal-to-noise ratio, and completeness
uncertainty, because of missing eye movements due to a low sampling rate, and the
light conditions might be too bad for the pixels to work properly. Subsequently, in-
ference uncertainty is introduced, as each eye is recognized independently, fused
into a combined eye, and synchronized with other data, e.g., keyboard and mouse
events composing a sample.

Many eye trackers address uncertainty algorithmically, e.g., internal latencies get
canceled out, and missing values are estimated using a co-simulation of the partic-
ipant’s eyes [33]. Most vendors provide uncertainty-related information as a part
of technical specifications and recorded data, e.g., angular gaze accuracy, sampling
resolution, and recognition confidence. Hence, an eye tracking device exhibits all
three levels of uncertainty and many of its sub-systems have to be considered as
black boxes. Unfortunately, this means that we have to rely on information provided
by vendors, which limits our basis for revealing uncertainty.

As examples, we have examined several Tobii and SMI eye tracking systems,
shown in Table 1 and Table 2. They provide quite different quality metrics and
technical specifications: Tobii defines a validity code to represent the success of
recognition, whereas SMI emits several Boolean and ordinal values for conveying
recognition confidence and timing issues with device-dependent availability. With
our generic model and handling of uncertainty, we aim to cover this whole variety
of technology-driven descriptions of data uncertainty.

We believe that visualizing uncertainty helps researchers find disagreement in
data and estimate a credibility of their recordings. Formally, we model and visual-
ize two different types of uncertainty: An accuracy and precision uncertainty model
that is based on probability density functions (PDFs) for spatial and temporal di-
mensions of data, and a failure uncertainty model that is based on black-box metrics
emitted by the eye tracker, that indicate whether the data sample was invalidated (Ta-
ble 2). Visualizing these models allows us to distinguish during cleansing between
measurement-related issues, recognition failures, and ambiguities.
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Fig. 3 Projection from eye space to gaze space using cones. Measurement imprecision and dis-
agreement between the left and right eye are exaggerated for illustration purposes.

4.2 Gaze Data

We focus on uncertainty present in gaze positions for the eye P C R?, and time
T C R, modeled as PDF. For one sample, the PDF reads:

pp: T xP—[0,1] (1)

Here pp describes the probability of a gaze position to take a given value.

Visually, we aim at propagation of uncertainty by expanding every projection line
to a cone (Figure 3). Note that this cone does not model aspects of the human visual
system, such as foveal acuity or gaze contingency. This is only about transforming
accuracy and precision of the eye tracker to gaze space, i.e., we need to have all
data in gaze space. Since the angular accuracy op is not directly provided in gaze
space, we estimate it using 6, provided in eye space (Table 1) and the eye—stimulus
distance d:

op =d sinoy 2)

When exploring the density-based visualization shown later on, one should be aware
how d was determined, i.e., manually measured or by guessing, because the impres-
sion of accuracy and precision can be deceiving otherwise. Angular accuracy is the
proximity of measured samples to the true direction the eye is looking. This is not
to be confused with precision, denoting reproducibility of the measurement. Hence,
we argue that a normal distribution with 20 should be assumed, because it covers
95% its area. This allows us to define a PDF for each gaze position p = (px, py) and
accuracy op = (Ox, Oy):
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Table 2 Quality metrics recorded by vendor software.

Field Description Scale
Tobii Studio

Validity(Left|Right) Validity code for each eye nominal
SMI iView

(LIR) Validity General quality value for each eye Boolean
Pupil Confidence Validity of the pupil diameter Boolean
Timing Indicates a timing violation Boolean
Latency Required time to process a sample us

_ < (Px(zéo'x))z 4 (Py(zé",v»z >

@ (p;op) = Poe 3)

Here we assume that the sample position at the origin and normalization using ¢y.
Time can me modeled as simple box function at time ¢, and sample intervals A¢,
if we assume a uniform probability distribution within a temporal sampling interval:

é(t;At)—i 1 ifte[—At/2,A1/2) @)

At |0 otherwise

Again the sample time is at the origin.
We assume that the probability densities for spatial position, @, and time, &, are
independent. Therefore, the overall probability pp, is obtained by multiplication:

pr(t,p;At,0) = @(p;0)E(1; At) ©)

This could be easily extended to binocular vision by adding pp of the left and right
eye.

In addition to accuracy and precision issues, the eye tracker can invalidate the
sample, which is denoted by metrics, shown in Table 2. Hence, the PDF is only
valid if the eye tracker did not invalidate the sample. Invalid samples have to be
treated separately by any subsequent processing, in particular by our visualization
techniques.

If it is not possible to determine an eye—stimulus transformation, as in Figure 3,
because the required depth information is missing, the depth value needs to be ap-
proximated. Most eye trackers make an educated guess by defining the recorded
video as stimulus, because the camera—eye distance can be measured quite well.
Although this is a good approximation, it poses problems when dealing with mul-
tiple recordings, because finding a common space can be a hard problem of itself,
especially for mobile devices. Fortunately, it is easy to solve for stationary devices,
which allows combined cleansing and preliminary analysis of multiple recordings.
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4.3 Signal and Event Data

A recording may include other data that helps put gaze data into context. Signals
S C R, such as electroencephalography (EEG), motion capturing, or eye tracker
latencies, can be represented as time-series data analogously to gaze data. Again,
we use a PDF to describe uncertainty:

ps: T xS —[0,1] (6)

Events with parameters E x P, such as keyboard, mouse, and touch input, are con-
sidered discrete. We neglect domain-specific uncertainty models for events, e.g., a
model for accidental keyboard strokes, and thus only time 7 may be augmented by
a PDF, i.e.:

pe: T —[0,1] @)

Essentially, this is a generalization of our uncertainty model to fit all remaining
aspects of a recording. For the sake of simplicity, we do not deal with manually
annotated events [8].

5 Cleansing Technique

Our processing model is based on the pipes and filters pattern, also used by Para-
View [1] and VisTrails [6]. Data is interpreted as immutable and processed by a
pipeline composed of functions. A function can perform any non-destructive map-
ping of data. Formally, we want to setup a processing graph G = (F,C) without
cycles composed of functions F, a sink function s € F, and connections C. If data
is pushed or pulled, all affected functions are recomputed according to their depen-
dencies in the graph. We have chosen this design because of its flexibility. Uncertain
and certain data are treated as values V, i.e.:

[iTXViX. . XV, =TxV)x..xV, 8)

Visual cleansing means inspecting a function’s visual response, while adjusting (op-
tional) parameters to manipulate data. To illustrate this concept, we describe a cou-
ple of use cases and functions:

Velocity, Acceleration, and Jerk might be of interest in general for any time-
varying positional data. All values can be obtained by simply chaining a differ-
ential operator up to three times.

Filtering is likely to be useful for repairing corrupt data. Such a function could
do interpolation if a trigger signal is set, and pass-through otherwise. Another
approach would be to reconstruct corrupt data using approximation.

Let us assume a simple cleansing function that drops data if a trigger signal is set
and does pass-through otherwise. Depending on the amount of data gathered, tuning
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this trigger signal can be a tedious task. We spare users from small-scale work, by
the following approach: We employ trigger signal emitting functions that analyze
values, such as recognition confidences or other quality metrics, which can then be
fine-tuned and used for other cleansing functions. Assuming the processing graph
was set up correctly, this approach allows going from macroscopic to microscopic
cleansing iteratively and quickly.

6 Visualization Technique

Our technique uses a stack of specialized, time-aligned visualizations. Time runs
from left to right and the stack is sorted in a user-defined fashion. Plot-based stack
elements reveal gaps in the data, disagreement between the individual and com-
bined eyes, i.e., the failure uncertainty model. Volume-based stack elements reveal
measurement imprecision, i.e., the accuracy and precision uncertainty model. In the
following sections, we will discuss how uncertainty connects cleansing and visual-
ization.

6.1 Stereo Plot

We use stereo plots for eye-related data—the name originates from the fact that the
right eye plot is flipped below the left eye plot and the combined eye is rendered on
top of both. Stereo plots manifest as line plots and scarf plots [25]. Of course, they
may be used without this little stereo twist as well, like shown later on. In terms of
our uncertainty model, stereo plots visualize the failure uncertainty model through
comparison—the accuracy and precision uncertainty model is omitted here.

The line variant is used for ratio-scale data, as shown in Figure 4. Differences
between the individual eyes can be inferred by comparing the top plot (L) and bottom
plot (R). Both plots are overlaid with thick lines (C), representing the combined eye.
Undefined samples originating from the eye tracker or cleansing are depicted as
gaps shown at (1). Disagreement can be observed at (2).

B, s Ml

Fig. 4 A stereo line plot showing the left, right, and combined eye (gaze position). The right eye
chart is flipped below the left eye plot and the combined eye plot is drawn as overlay of the top and
bottom plot.
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Fig. 5 Top: A stereo scarf plots, showing validity over time (green: good, otherwise: error) for
the left and right eye. The right eye chart is flipped below the left eye plot. Bottom: A scarf plot
showing activity (big bars: stimulus visibility, small bars: user input)

@ O]

The scarf plot variant is used for nominal data such as validity codes and events,
as shown in Figure 5. Again, differences can be inferred by comparing the top scarf
plot © and bottom scarf plot (R). The combined eye is missing because there was
no nominal data for the combined eye. Undefined samples are shown at (D), dis-
agreement is shown at 2). We also use non-stereo scarf plots to depict concurrent
activities, hence a scarf plot may be subdivided vertically to indicate concurrency,
depicted at 3). We use ColorBrewer palettes [17] to encode quantities by color.

6.2 Space-Time Cube

We visualize gaze positions using a space-time cube, as shown in Figure 6, contain-
ing a video plane (&), similar to the one by Kurzhals and Weiskopf [21], except that
we use an orthographic instead of a perspective projection and volumes (B) instead of
solid points for rendering. The former prevents distortions around a vanishing point
at the cost of a natural feeling of depth. The latter allows us to encode more informa-
tion such as uncertainty. Hence, our space-time cube provides a visual impression
of the accuracy and precision uncertainty model using density, i.e., the failure un-
certainty model is neglected. Low density equals high uncertainty. The video plane
provides some additional context during cleansing. At (1) magic values emitted by
the eye tracker can be observed, while (B) indicates fixations. This would be hard to
see if gaze positions are depicted using solid points of arbitrary size. Remember that
we use a box function to visualize time and a Gaussian function for spatial precision
and accuracy, which allows us to do proper scaling of time and space.
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Fig. 6 An orthographic space-time cube showing gaze positions over time (from left to right),
augmented by a PDF along with a video plane to provide some additional context.

Ray Start Ray End Ray Distance Gaze Volume

B

Fig. 7 Volume rendering of three gazes. The bounding box is intersected with the camera-ray in
the fragment shader (ray start, ray end, and ray distance). Afterward, ray marching is applied to
compute the gaze volume. All densities are blended together afterward.

7 Implementation

We provide our C++/Qt-based implementation under the terms of the MIT-License
on GitHub'.

The pipes and filters pattern maps directly to code, e.g., data is loaded by a Load-
CSYV class, passed to cleansing function classes, and the visualizations are managed
by Display classes. In terms of rendering, we took two different approaches. Stereo
plots and other simple elements are rendered using the QPainter API, while space-
time cubes are rendered using native OpenGL.

We had to mix a couple of rendering approaches to achieve crisp images and
decent performance for our space-time cube. The basic idea is splatting of ray-casted
volumes. Splatting is done additive, as shown by Hopf et al. [19]. Each sample is
ray cast, as done by Stegmaier et al. [31]. This is different from what Djurcilov et
al. [14] do for volume rendering of uncertainty, i.e., their approach of storing the
density information inside a volume texture is not feasible for sparse data, such as
gaze positions, because of memory constraints.

Gaze points are passed as vertex attributes to the shader program. All points are
transformed in the vertex shader and expanded to a cube in the geometry shader.
Afterward, we apply ray marching and splatting, shown in Figure 7. This allows us
to render the gaze positions using one draw call, resulting in decent performance.
Note that the video plane and axes are rendered using separate draw calls.

U https://github.com/schulzch/BinocularVis
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8 Case Study

The case study aims at showing how to apply the visualization technique, i.e., how to
identify typical relationships between dimensions of eye tracking data that indicate
an error. We have used two data sets for this case study.

The first data set is from a study with five participants using a Tobii T60XL and
Tobii Studio 2.2.8. The test was conducted in a distraction-free room, illuminated
with diffuse light. The participants had to match a line to a pair of dots with varying
line lengths and point distances, leading to very fast, comparative eye movements.
The second data set is from a study with fifteen participants using an SMI RED250
and iView 2.8.26. The test was conducted under similar conditions. The partici-
pants had to interact with small button-sized input elements of high information
density, depicting a probability density function, leading to very subtle gaze position
changes. We consider both studies as typical representatives and potentially vulner-
able to accuracy, precision, and missing data issues. We start with a description of
all visual representations of eye tracking data used in our case study:

Time is represented as simple ruler and measured in seconds.

Activity is represented as scarf plot. Long bars depict the duration of image stim-
uli, i.e., their visibility. Short bars (at the end of stimuli) depict mouse clicks by
the participant.

Validity is represented as stereo scarf plot for each eye individually. Combined
eye confidence is not emitted by the eye tracker. Light green depicts “all fine”,
other colors depict “error”.

Processing Latency is represented as non-stereo line plot and measured in mi-
croseconds. SMI devices start to drop samples if latency is too high.

Camera-Eye Distance & Pupil Sizes are represented as stereo line plots. The
former is the Euclidean distance computed from the eye coordinates. The latter
is an estimate of the true pupil’s size.

Gazes are represented as space-time cube containing density splats and a video
plane for additional context.

Gaze X & Y are represented as stereo line plots. In addition to the individual
eyes, the combined eye is depicted using a darkened line.

Gaze Velocity is derived from gaze coordinates through differentiation and rep-
resented as stereo line plot. Again, the combined eye is depicted using a darkened
line.

We will demonstrate cleansing by visually inspecting slices (A) to (D) from the first
data set shown in Figure 8 and draft possible steps for cleansing.

Slice (A) shows minor recognition jitter for both eyes in the validity plot around
1.5 s, which reveals corrupt values in the plots below. Note how the dark lines of the
combined eye in the gaze plots do not intersect with the light colored areas of the
individual eye data. This allows us to infer that the eye tracker has repaired those
errors during eye fusion. If one wants to compare the left, right, and combined eye
data in an analysis, it might be a good idea to reconstruct the missing individual eye
data, but for this data set it does not matter.
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Fig. 9 Non-cleansed (top) and cleansed (bottom) space-time cubes from our first data set. Note
dropped gazes close to the boundaries, where the participant was looking off-screen.

Slice (B) reveals a real issue, as recognition of both eyes failed around 19s. We
can safely assume that the eye tracker does not use simple interpolation to fill in
missing data, since the small time segment between the recognition errors does not
seem to be a supporting point. After inspecting actual values, it turns out that the eye
tracker emits zero for combined eye data and a negative magic value for individual
eye data. This is documented behavior, even though it is considered bad practice to
encode undefined and other magic values in R. In addition, notice how camera—eye
distance plot and pupil size plot seem featureless, because of the same issue. We fix
this issue by filtering the corresponding data, i.e., setting magic values to undefined.

Slice (C) shows the same data with cleansing functions applied. The pupil size
plot and camera—eye distance plot now reveal many more features because scaling
is no longer influenced by magic values. While rotating the space-time cube and
correlating data with the stimulus image (not shown), we notice a weird offset in the
data around 5.7 s. After inspection of the actual values, we know that the participant
was looking off-screen. We decide to clamp the individual eye data to the screen
resolution and set the combined eye data to undefined, if the participant was looking
off-screen, so it will not interfere with post-cleansing analysis.

Slice (D) shows the same data with more cleansing functions applied. The miss-
ing line on top of the lower two stereo line plots indicates that the participant was
looking off-screen. Further inspection of the data reveals that this happens a couple
of times during comparative eye movements, indicating that this could be an issue
resulting from the combination of the stimuli and eye tracker. Just to make sure we
removed the data in question using a filter-and-drop function (not shown).

An interesting observation across slices (C) and (D) is that the participant’s pupil
sizes seem to be unsynchronized. Unless this is caused by the eye tracker, it might
be worth investigating.
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We finish cleansing of this participant’s data set by comparing the space-time
cube’s pre- and post-cleansing, shown in Figure 9. This also gives us a first impres-
sion of where fixations are (areas of high density).

The first data set is about 45 to 90 seconds per participant. It took a couple of
minutes to cleanse data from the first participant. Data of other participants was
much faster to cleanse.

The second data set is about 15 minutes per participant. In addition to that, the
eye tracker has a high sampling rate, hence we choose a different strategy: take a
participant’s data with minor modifications, or not. We demonstrate this strategy
by visually inspecting about 4 minutes (one task) from one participant, shown in
Figure 10. We can confirm that the participant was reading instructions between (&)
and (B), because the start button is in the center of the screen and a line-reading
pattern is revealed though density. This can be easily confirmed using the video
plane. Around (C), the behavior changes much, the latency peaks, and the eye tracker
starts to drop data. Using the video plane, we can confirm that the participant has
finished the task Again, through inspection of the video plane, the participant has
finished the task, hence interesting eye movement data is between (B) and (C). At (D),
a latency peak in the region of interest and missing data can be observed. Through
inspection of the video plane and raw values, the source of this issue is unclear.
Because it did not interfere much with the experiment, we drop the affected samples.
Around (E), recognition of the right eye seems odd, but gaze positions look fine, so
we decide to ignore it. Finally, we cut the region of interest from the data set. This
process took less than a minute to complete.

9 Conclusion and Future Work

We discussed a two-layered uncertainty model in the context of eye tracking and
a processing model for data cleansing. Additionally, we presented a technique to
visually deduce disagreement and credibility by comparing time-aligned, stacked
representations of eye tracking data. In particular, comparing the left and right eye
against the combined eye seems to be a good strategy. Results show that data cleans-
ing can be a fast process, given that enough visual context is provided, such as raw
values, a stimulus view, and measured data augmented by uncertainty. We have in-
creased data quality by dropping and clamping unexpected samples. Additionally,
we provide an open source implementation for the interested reader.

In future work, want to extend our density-based approach to areas of interest
and fixation filters. We believe that fuzzy intersection with areas of interest might
be useful to convey and increase trust into data during analysis. From our own expe-
rience, fixation filters are sometimes difficult to tune, hence we envision sensitivity
analysis for fixation filters, by mapping the parameter space of fixation filters to
gaze space using volume rendering.
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Fig. 10 A high-level view from our second data set, one participant. From top to down: processing latency, pupil sizes, gazes of the left eye, gazes of the right
eye, along with gaze velocity and decomposed gaze coordinates of both eyes.
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