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Abstract—Monitoring code quality and dependencies is an
important task to keep software maintainable. While generally
well researched, only little work on visually analyzing code
quality of component-based front-end web applications exists
that considers the specifics of such software systems. We propose
an approach to visualize dependencies and code quality metrics
of component-based JavaScript React applications. Our prototype
implementation uses a node-link diagram for dependency visu-
alization, tailored to the specific component structure of React
applications and enriched with various visual cues. It is linked
with different panels to show code quality and exact source code
locations. Recommendations on how the quality of the system
under analysis can be improved and refactored are provided.
We evaluated our prototype in a small user study with four
participants and found that it helped in program comprehension
tasks and finding refactoring opportunities.

Index Terms—JavaScript, React, software visualization, code
quality metrics, dependency graph, refactorings

I. INTRODUCTION

The Internet is not simple static hyperlinked texts anymore.
More and more sophisticated JavaScript front-end applications
run inside the web browser and become challenging to
develop. The main programming language for realizing these
applications of increasing complexity is JavaScript. To adapt
to the needs of developers, the language increases its feature
set constantly. One of the main features needed for being able
to write complex software is the concept of modularization (or
components in the context of web frameworks). We propose an
interactive visualization for the analysis of component-based
JavaScript front-end applications, that run in the web browser.

On the one hand, maintaining and further developing
complex, component-based JavaScript front-ends is not dif-
ferent from other programming languages—it requires a solid
understanding of the program’s code and can be facilitated by
software visualization. On the other hand, JavaScript front-end
frameworks, specifically for usage in single-page applications
(SPA), share some important characteristics that discern them
from other code. Most of the popular web frameworks (e.g.,
React', Angular?, or Vue.js*) follow the reactive programming
paradigm. Using template languages to mix presentation and
application logic, they can propagate changes in data to update
the state of the front-end application.

Thttps://reactjs.org
Zhttps:/angular.io
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In this work, we want to (I) visualize the structure of
component-based JavaScript applications for interactive front-
ends to facilitate understanding and (II) inspect their code
quality to offer refactoring opportunities. We focus on one
of the most popular [1] front-end frameworks, React, and its
template language JavaScript Syntax Extension (JSX).

A common way of visualizing the structure of a software
system is to model dependencies as a graph. To show dependen-
cies between components, we use a tailored visualization based
on a horizontally layered graph layout (see [[§ in Figure 1).
Our visualization of the dependency graph allows two levels
of analysis: (I) an overview of the dependencies between
components of the application (Figure 1) and (II) a detail-
level perspective of the dependencies of functions of a single
component (Figure 2).

Our prototype helps in understanding a software system by
providing visual guidance on code quality metrics gathered
by static analysis, which we show in a side panel for the
current selection (see in Figure 1). For the analysis of
JSX template code, we added several specific metrics. Based
on these metrics, our prototype further helps in identifying
refactoring opportunities by providing visual cues in the node-
link diagram and showing specific warnings for violating best
practices.

We evaluated our prototype in a user study with four partici-
pants, and were able to verify that it helps in comprehending an
unknown codebase, as well as finding refactoring opportunities
in an already known codebase.

The prototype is implemented as a web-based tool
and available online at https://vis-tools.paluno.uni-due.de/
component-graph/.

II. RELATED WORK

Visualizing the code quality of a software system is a
common topic in software engineering. There exist numerous
tools to analyze and summarize code quality, often in dashboard-
like interfaces (e.g., SonarQube*). Code quality has also
been visualized as interactive reports using natural language
generation [2], directly inside the code editor as in-situ text
visualizations [3], or in a tabular format with embedded bar
charts [4]. Dependencies, as part of the structure, are often
modeled as graphs and visualized in node-link diagrams. These

“https://www.sonarqube.org
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Fig. 1. Our tool consists of four panels: “ the Component Graph Panel is a node-link diagram that visualizes the component-based structure with additional

information,

the Code Quality Panel shows metrics of selected entities (the root component App is selected in this example),

the Source Code Panel

provides the source code of the selected entity, and E the File Tree Panel displays the loaded directory and file structure of the application.

can be specifically tailored for one domain (e.g., OSGi [5]),
to serve a specific purpose (e.g., finding code smells in
Java projects [6] or extracting functionality into components
[7]). One approach that applies node-link dependency graph
visualization to JavaScript projects is Hunter [8]. Besides the
dependency graph, Hunter also shows directory contents, file
sizes, and the source code of a given JavaScript application.
As Hunter’s focus is program comprehension, it does not
report any code quality metrics. An approach to simultaneously
visualize structure and code quality is E-Quality [9]. Here, the
shapes, sizes, and color of the nodes and links are used to
encode different code quality metrics. This approach, however,
is designed for object-oriented software systems in Java.
Determining the code quality of JavaScript projects has already
been addressed without the specific use of visualizations, for
instance, detecting code [10] or dependency smells [11] and
identifying refactoring opportunities [12], [13], [14]. However,
we are not aware of any visualization approach for code quality
of JavaScript projects or one that considers the specifics of
component-based web applications.

III. VISUALIZATION APPROACH AND IMPLEMENTATION

To understand the structure, monitor the code quality, and
find refactoring opportunities in component-based JavaScript
applications, we developed a prototype tool using D3.js’
and Angular. The tool consists of four main views: (A) the
Component Graph Panel, (B) the Code Quality Panel, (C) the
Source Code Panel, and (D) the File Tree Panel (see Figure 1).

Shttps://d3js.org

Our tool is specifically tailored to React-based web applica-
tions. React organizes a single-page application into individual
components, which encapsulate the application logic and can
output visual elements to the screen. For the latter, React uses
JavaScript Syntax Extension (JSX) as a template language,
that is based on a mixture of HTML and JavaScript. JSX
allows writing JavaScript expressions (e.g., variables, loops,
and conditional statements) directly inside HTML blocks.

It is crucial to consider these specifics in the visualization
to provide a meaningful visualization of the structure of a
React application. For instance, we enriched the main node-
link diagram within the Component Graph Panel with separate
representations of framework-specific functions and included
metrics to specifically analyze JSX code in the Code Quality
Panel.

Upon opening the application and loading source code, our
tool computes the dependency graph and code quality metrics
inside the browser. For the analysis to work on the client
side, without the need for a back end, we use Babel® (for
AST generation and analysis) and TyphonJS-ESComplex’ (for
code quality measurements). This architecture allows analyzing
projects without any (potentially privacy- or copyright-sensitive)
information being transferred to a server. Furthermore, it allows
our tool to run completely offline, without the need of any
network connection.

Ohttps://babeljs.io
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A. Component Graph Panel

The main view of our tool, the Component Graph Panel,
is a node-link diagram in the center of the screen (see [ in
Figure 1). It supports two levels of analysis: an application-wide
overview of all analyzed component and a component-wide
detail level view.

1) Overview of the Application’s Components: In its initial
state, this panel gives an overview of all components in the
analyzed codebase. This depiction of the dependency graph uses
nodes for components and links for their relations. For the initial
layout computation and to highlight the hierarchical aspect of
component composition and inheritance, we used a constraint-
based graph layout algorithm [15] provided by WebCoLa® to
construct a layered graph layout. As with many computed node-
link layouts, an optimal reading experience of the result is not
always guaranteed. To mitigate this, our tool supports a force-
directed graph layout® as an alternative to the layered graph
layout—whereas it does not show the hierarchical structure
as clearly, it often better reveals clusters of components.
Furthermore, both layouts allow manual repositioning of nodes
by dragging them with the mouse.

React components can be linked by either composition or
inheritance. This is visualized as a solid or dashed line between
the nodes, respectively. The direction of the relation is indicated
by small arrow heads. React offers two ways of writing a
component: either as a class or as a function. Knowing about
these component types can be important for understanding and
refactoring the application. To visualize this distinction, we
use a striped filling for class components and a solid filling
for function components. The size of the node encodes a
user-selectable metric (for a list of supported metrics, see
subsection III-B). This is set per default to the number of lines
of code.

React components (both class and function types) often
consist of a number of inner functions. The number and types of
these function can give a first approximation of the component’s
complexity. To show the number and type of the inner functions,
we arrange color-coded circles around each node, and highlight
those functions that use framework-specific or JSX code in
light blue while others are light purple.

2) Component Drill-Down: Double-clicking a node opens
the second level of analysis of the Component Graph Panel (see
[¥1 in Figure 2). This detail-level view of a single component
visualizes all inner functions. Again, we use light blue for
framework-specific and light purple for generic JavaScript
functions. The functions that return JSX code are marked with
a double border. The layout of the node-link diagram in the
Component Drill-Down is also controlled by a layered graph
layout. On the top, there is a node for the component itself, in
the first vertical level all framework-specific inner functions,
and below all other functions. Similar to the Component Graph
Panel, this can be switched to a force-directed layout.

8https://marvl.infotech.monash.edu/webcola
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Function calls inside a component are visualized as the links
of the diagram. We include the component itself as a node
to have a root node for the graph. This way, dangling nodes,
which are not connected to any other node, indicate a function
that is never called from inside the component.

To find clusters in the graph of inner functions of a compo-
nent, we use the Louvain community detection method [16]
for directed graphs. In case any clusters are found, we replace
the previously described color-coding and assign each cluster
a unique color (see [¥g in Figure 2). The coloring mode can
be switched with a button at the top of the screen.

B. Code Quality Panel

To evaluate the code quality of a component, we use a
metric-based static analysis approach. Selected metrics covering
different quality aspects are visualized in the Code Quality
Panel as bar charts (see in Figure 1). The list of metrics
contains: Lines of Code, Cyclomatic Complexity, Halstead
Difficulty, Halstead Bugs, and Parameter Count. These are
computed for components as well as inner functions. For
components, we also compute two extra metrics that deal
with the possibility of JSX output: Lines of JSX Code and
Maximum JSX Nesting. The first one gives the number of lines
of code of all JSX root nodes combined, while the second one
returns the maximum number of JSX element nesting.

Each of the metrics has a specific threshold, which is based
on values given by McCabe IQ'? (for general-purpose metrics)
and personal experience (for special React metrics). The values
visualized as bar charts are colored according to the metric’s
threshold (less than 0.8 of the threshold: green; between 0.8
and 1.0: orange; above 1.0: red). Below the bar charts, we
show messages and warnings from the React documentation'!
regarding the deprecation of lifecycle methods.

To easily spot components with metric violations, we also
add small icons to the relevant nodes in the Component Graph
Panel (more than 0.8 of the threshold: yellow warning sign;
above 1.0: red warning sign; for example nodes Editor and
SettingsForm in [[Y in Figure 1).

C. Source Code Panel

To inspect the details of the actual implementation, the
Source Code Panel (see in Figure 1) shows the source code
of the file that contains the currently selected component or
function. It uses syntax highlighting and line numbering to
mimic the look-and-feel of an IDE. A light gray background is
added to indicate the source code that belongs to the currently
selected component or function in the Component Graph Panel.
Depending on the selection, this can be the whole content
of a file or just parts of it. This is useful especially in the
Component Drill-Down view, where the user can select only
parts of a whole file by clicking for example a single function.

10http://mccabe.com/iq.htm
Uhttps://reactjs.org/docs/react-component.html#legacy-lifecycle-methods
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Fig. 2. Each node in the Component Graph Panel contains a preview of the inner structure of a component (small circles around the node in m ).
Double-clicking the node opens the Component Drill-Down (see m ), that displays all inner functions inside a component and their relations. Nodes of
framework-specific functions are colored light blue, components green, and regular JavaScript functions light purple. Inner functions, that return JSX Code
have a double-stroked border. This coloring mode can be switched to instead show clusters, computed via the Louvain method (see ).

D. File Tree Panel

The File Tree Panel (see B in Figure 1) uses a file-explorer
metaphor to show the directory structure of the project. The
files are displayed as icons inside folders, that can be expanded
and collapsed. The list of files is filtered to show only files, that
can be analyzed inside the tool. Clicking a file highlights the
contained components in the Component Graph Panel. Double-
clicking scopes the Component Graph Panel to include only
components from files in the selected folder.

IV. EVALUATION: USER STUDY

To evaluate our tool, we conducted a small-scale user study
with four participants. The sessions were designed as think-
aloud sessions and were carried out remotely via video confer-
encing systems. All participants have a background in software
development and experience with React-based applications to
a varying degree. Some reported prior experience with static
analysis tools and code quality metrics. As all participants
work in the same company; internal projects could be used for
the study.

The study was divided into two parts: (I) analyzing an
unknown codebase to demonstrate the program comprehension
aspect of our tool, and (II) identifying refactoring opportunities
in an already known codebase. For the first part of the study,
we used an open-source React sample application'?, and for
the second part, we used a company-own React application all
participants were familiar with. Both applications are mid-sized
in terms of number of files and components to be analyzed.

Part I consisted of several tasks, including identifying nodes
based on certain criteria (e.g., by name, by number and type of
relations, or by metric), finding functions in a given component,
and identifying all components of a given JavaScript file. As
React components can output visual elements by returning
JSX code, we also added a task of identifying the render path
of a single component. The render path in this context is the

Zhttps://github.com/gothinkster/react-redux-realworld-example-app

shortest path in the dependency graph from the root component
to the JSX function of the given component.

Part II consisted of an evaluation of the metric threshold
visualization, the display of warning messages and icons, and
the cluster visualization.

We asked participants to perform these tasks and rate their
experiences and findings on a scale from 1 (worst) to 5
(best). Participants rated the statement “The approach increases
program comprehension of a component-based application.’
with an average of 4.75 (4, 5, 5, 5) out of 5 points. Regarding
the code quality visualization aspects of our tool we asked
the participants to rate the statement “The approach helps in
evaluating the code quality of a component-based application.”,
and they answered with an average of 4.75/5 (4, 5, 5, 5). The
statement “The approach helps in refactoring a component-
based application.” was rated with 4.5/5 (4, 4, 5, 5) points on
average. We also asked the participants for feedback on more
general aspects of our tool, and participants rated the structure
of the user interface with 4.5/5 (4, 4, 5, 5,) points on average,
and the interaction possibilities with 4.25/5 (4, 4, 4, 5) points
on average.

>

As part of the think-aloud character of the sessions, par-
ticipants were asked to voice every thought and impression.
We observed some participants having minor difficulties in
finding specific features that were needed to complete the
tasks. Most notably, multiple participants struggled to open
the Component Drill-Down and inspect a single component.
To mitigate this, we added small explanatory texts to the tool
afterwards. Other suggested improvements include increased
highlighting of selected components, keyboard shortcuts, text-
based component search, and the feature of highlighting a path
between two selected nodes.

With the participants’ positive feedback and the overall
high scores in the evaluation, we believe that our tool is
easy to understand and provides relevant insights on the
structure and code quality of component-based web applications.


https://github.com/gothinkster/react-redux-realworld-example-app

Nevertheless, our study is only a first step towards evaluating
the approach and, more generally, the support for understanding
modern web applications. Some obvious shortcomings relate
to the small sample size of participants and a missing control
group. This and a potential social-desirability bias restrict the
interpretability of any quantitative measures given above. Also,
the qualitative part of the evaluation (i.e., interpreting the
thinking-aloud protocols) is limited by the simple nature of
tasks and the restricted extent of analysis.

V. FUTURE WORK

Our tool covers a number of core features already and can
be considered a basis for developing an even more versatile
analysis framework for React applications. The following ideas
give an outlook on meaningful future extensions.

a) Dynamic Metrics: The Component Graph focuses on
metrics recorded by static analysis. To support improvements
of behavior and performance characteristics of an application,
one idea would be to include dynamic metrics in the prototype.
Possible metrics could be execution times of a component’s
function or the number of instantiated components. This infor-
mation can then be used to debug performance bottlenecks and
gain insight into runtime dependencies between components.

b) Visualizing the State Machine: Modern single-page ap-
plications are often managed as state machines that implement
the Flux application architecture (e.g., Redux'3 or MobX'*). For
debugging purposes, it is already an established practice to step
through changes done to the internal state of the application and
observe how the application reacts to these changes. Offering a
way to include a visualization of the state machine could be a
possible extension of our tool. Showing state-based interactions
between components could further aid program comprehension.

c) Adding External Dependencies: Currently, our proto-
type focuses on dependencies inside components and between
components of a single application. An extension could be to
also include components of external React-based dependencies
(e.g., the dependencies usually defined in a package. json
file of a JavaScript project). This could be realized by extending
the central graph by a third level that depicts the project within
the dependencies to the components of these external libraries
and sources.

VI. CONCLUSION

In this paper, we presented a visualization approach for
understanding the structure and analyzing the code quality of
component-based React applications. It visualizes dependencies
and hints at refactoring opportunities. We evaluated our proto-
type in a small-scale user study. We showed that our prototype
can help developers understand unknown codebases, as well as
finding code locations in known code that violate best practices.
The latter helps in identifying refactoring opportunities.
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