
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

Visual Interactive Map Matching
Robert Krüger, Georgi Simeonov, Fabian Beck, and Thomas Ertl

Abstract—Map matching is the process of assigning observed geographic positions of vehicles and their trajectories to the actual road
links in a road network. In this paper, we present Visual Interactive Map Matching, a visual analytics approach to fine-tune the data
preprocessing and matching process. It is based on ST-matching, a state-of-the-art and easy-to-understand map matching algorithm.
Parameters of the preprocessing step and algorithm can be optimized with immediate visual feedback. Visualizations show current
matching issues and performance metrics on a map and in diagrams. Manual and computer-supported editing of the road network model
leads to a refined alignment of trajectories and roads. We demonstrate our approach with large-scale taxi trajectory data. We show that
optimizing the matching on a subsample results in considerably improved matching quality, also when later scaled to the full dataset. An
optimized matching ensures data faithfulness and prevents misinterpretation when the matched data might be investigated in follow-up
analysis.

Index Terms—Map matching, data cleaning, data transformation and representation, geographic visualization.

F

1 INTRODUCTION

IN geo analytics, large amounts of recorded trajectories need
to be processed. These spatio-temporal paths might reflect

the movement of vehicles or persons. Trajectories are usually
recorded using GPS devices, which results in a high number of data
points. The recording underlies uncertainties because of imprecise
GPS localization and might contain gaps caused by temporarily
losing the GPS signal. For reducing data complexity and making
movement comparable, trajectories are mapped to a road network.
Map matching algorithms assign each recorded trajectory to an
individual geographic path in a transportation network. These
heuristics try to compensate measurement uncertainties, but they
only work if the algorithm’s parameters are chosen wisely and fit
the properties of the recorded data. Also, there might be matching
problems because the road network model contains ambiguities or
is outdated. When using the matching algorithm only in its default
configuration, it might only provide results of poor quality. This
could lead to misinterpreting the data in later analysis, for instance,
investigating traffic flow for road planning, fleet management, or
understanding mobility patterns.

This paper presents an approach for optimizing the map match-
ing process and cleaning the input data. We focus on improving
this preprocessing step only, whereas any further analysis of the
trajectories is important and intended, but out of scope for this
paper. We develop a visual analytics system that integrates a state-
of-the-art map matching algorithm with interactive visualizations
showing problems in the current matching results (Figure 1, B)
as well as quality and performance measures (Figure 1, C). By
refining the matching parameters (Figure 1, A), a data analyst
can globally optimize the results and find an appropriate trade-off
between quality and performance of the matching process. Also,
the systems supports semi-automatic local corrections of problems
in the road network, for instance, missing road links or imprecise
road routing.

• R. Krüger, G. Simeonov, and T. Ertl are with the Institute for Visualization
and Interactive Systems, University of Stuttgart, Germany.
E-mail: [firstname.lastname]@vis.uni-stuttgart.de

• F. Beck is with paluno, University of Duisburg-Essen, Germany.
E-mail: fabian.beck@paluno.uni-due.de

Manuscript received April 19, 2005; revised August 26, 2015.

The system allows analysts to reduce error rates and improve
the matching result in an interactive process, guided by visual
feedback and suggestions. In particular, this paper comprises the
following key contributions:

• We discuss the challenges of an interactive computer-
supported configuration of a map matching procedure
and derive requirements for a visual analytics approach
(Section 3).

• (a) We design an interactive visual analysis process to
control and optimize a map matching process. (b) We
develop an integrated system that supports this process
with synchronized views containing controls for configuring
the algorithm, map visualizations, and matching statistics
(Section 4).

• We evaluate the system by demonstrating the optimization
of the map matching in a case study (Section 5).

Finally, we conclude in Section 6 that our system not only
provides a tool to improve the quality of a map matching process,
but also makes the process more trustful for the analyst due to an
increased transparency and understandability.

2 RELATED WORK AND BACKGROUND

Our approach builds on foundations in visual trajectory analysis
and map matching—we provide an overview on these two areas and
identify most related approaches, which visualize map matching
results. Since we target an improved preprocessing, we also review
visual and interactive methods for data preprocessing or cleansing
and highlight the lack of such approaches for the field of movement
data processing.

2.1 Visual Analysis of Trajectory Data
Trajectory analysis is an established research field. Different
approaches have been proposed to query, process, and visually
explore the data [1], [2]. Chen et al. [3] survey recent publications
and advances in the field. A common challenge of many approaches
is to reduce the complexity that trajectories bring along and to find
a clear representation that reduces clutter and overplotting to make
visible the main movement patterns. Andrienko and Andrienko [4]

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

A B C

Fig. 1. The user interface for Visual Interactive Map Matching comprises multiple linked views: (A) A panel to load, select, and filter the data, as
well as to configure map matching parameters. (B) A map to visualize the geographic scene (either generalized or with satellite imagery), the road
network, and map matching results such as matched trips, errors, and uncertainty score. With visual information given, the user can explore and edit
the road network in this view. (C) A statistics view showing the increase or decrease of errors and runtime during iterative refinements.

contribute a general framework for spatio-temporal trajectory ag-
gregation and visual exploration. Spatial techniques include graph-
based aggregation (e.g., to show main traffic flows [5]), density-
based aggregation (e.g., visualized as heatmaps [6]), and vector field
computation (which can be represented using flow visualization
techniques [7], [8]). Also, interactive filtering approaches allow for
visually exploring trajectory data and overcome clutter by drilling
down to a subset of interest [9], [10].

2.2 Map Matching

Map matching approaches “integrate positioning data with spatial
road network data (roadway center lines) to identify the correct
link on which a vehicle is traveling and to determine the location of
a vehicle on a link” [11]. They can be categorized into global and
incremental approaches [12]. Global approaches take the object’s
whole route into consideration, while incremental approaches
iteratively map parts of the trajectory. Global approaches often
achieve more accurate results, whereas incremental approaches
have lower computational costs. Quddus et al. [11] present a
different taxonomy by categorizing map matching algorithms into
geometry, topological, and probabilistic approaches. Geometry-
based approaches usually only search the network for nearby
edges with a minimal distance to the original trajectory segment,
while topological approaches also consider connections between
roads. Lastly, probabilistic approaches also make use of additional
information such as travel speed, directions, and route types and
lead to better results in case this additional information is available.

Many map matching approaches are made publicly available
as web services. Common API examples comprise Google Roads1,
Mapbox Map Matching API2, and the graphhopper routing3.
Users can query an endpoint that maps raw trajectory data to
a road network. The response delivers a node- or edge-based
path description of the movement. Some applications, e.g., by
graphhopper4, also provide visual interfaces that allow the user
to upload raw trajectory data and inspect the matched results.
However, to the best of our knowledge, there exists no visual map
matching system that allows the analyst to visually validate map
matching results, to interactively configure matching parameters,
or to edit the network representation.

To realize our Visual Interactive Map Matching approach, we
employ ST-matching [13], a global and probability-based matching
algorithm. In addition, this algorithm has the advantage of having
understandable and user-friendly parameter configuration options.

2.3 Visualizing Map Matching Results

Several visual analysis approaches leverage map matching as a
preprocessing measure to cope with large and complex movement
datasets and to reduce signal dithering as well as other inaccuracies.
Some visual analysis techniques [14], [15], [16], [17] apply
map matching, but their visual analysis approaches do not focus

1. developers.google.com/maps/documentation/roads
2. www.mapbox.com
3. www.graphhopper.com
4. https://github.com/graphhopper/map-matching

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

on preprocessing but on partitioning and clustering of the map
matching results. Lu et al. [18] present an approach to analyze
route choice behavior. Similarly, they first map the trajectories
to an underlying road network. This results in faster processing,
data filtering, and a clearer visualization. Instead of overplotting
resulting from similar routes, trajectories are aggregated, colored
accordingly, and visualized side by side.

2.4 Visual Analytics for Data Preprocessing
While we found no visual analytics technique that allows for an
interactive and visual map matching, there exist visual analytics
means for other data preprocessing tasks, often addressing related
challenges. Kandel et al. [19] present a general table-based
approach for data transformation and manipulation. More specific
approaches, e.g., for time-oriented data, have been proposed
by Bernard et al. [20] and Gschwandtner et al. [21]. In the
domain of mobility data, Krueger et al. [22] present a prototype
to align and annotate geographic data. Maps can be visually
overlaid with additional imagery, e.g., proving POI information.
Analysts can manually annotate maps by defining areas of interests.
Subsequently, trajectory data is enriched based on this additional
content. Wang et al. [23] propose an interactive method for
trajectory data cleansing and quality checks. They extract features
and train a supervised model with poor quality examples to detect
similar cases. While the aforementioned approaches help to clean
data, the registration of trajectories to an underlying transportation
network (map matching) is not yet addressed.

3 DESIGN CONSIDERATIONS

Designing the visual analytics system we present in this paper,
our main goal was to facilitate data analysts to efficiently deal
with map matching algorithms. While they might be experts
in general data analysis and visualization, their knowledge of
map matching typically is limited. Hence, without tool support,
they likely choose a non-optimal configuration of the algorithm.
Problems in the raw trajectories or in the road network might go
unnoticed. Besides increasing final matching results, we believe that
it is also important that the analyst develops a better understanding
of what the algorithm is doing. This finally makes the results
more trustful, both regarding objective and subjective measures.
With these goals in mind, we discuss the challenges of a visually
supported interactive map matching approach and derive specific
requirements that our visual analytics system is intended to fulfill.

3.1 Challenges
Most algorithms for data processing have a number of parameters
that users or developers need to configure. With an appropriate
configuration, an algorithms efficiently computes results of high
quality. But when misconfigured, the algorithms could slow down
or outputs questionable results.

For global map matching algorithms (like the applied ST-
matching), a considerable slow down could be caused by selecting
a set of candidate points in each matching step that is too large. On
the other hand, when only searching for candidates in a small radius,
the right candidates might be missed, which results in errors of the
matching. While some generalizable recommendations or useful
default configurations might be possible to provide, an optimal
configuration necessarily depends on the characteristics of the input
data, for instance, the density of the road network or the quality of

the GPS measurements. Hence, the parameter configuration of the
map matching algorithm and the preprocessing of the input data
is the general challenge that our approach addresses. In detail, we
consider the following challenges:

• The quality of a matching results is determined by the
correctness of the matched trajectories (i.e., precision) and
also the number of the trajectories the algorithm matches
(i.e., recall). A first specific challenge is to find a trade-off
between precision and recall of matches when configuring
the algorithm’s parameters.

• The results might also be flawed because some of the raw
trajectories are too imprecise to be assigned with sufficient
confidence to a path through the network. It is important to
identify and remove unreliable measurements to not affect
the matching results.

• Similarly, the second input source for the matching al-
gorithm, the road network model, might be imprecise,
outdated, or contain errors. Hence, to correct and adapt the
road network model could lead to an improved matching
result. Other map data, satellite images, or the recorded
trajectories give hints to where road links are missing or
need to be refined.

• Finally, the algorithm’s configuration might need to be
applied to a large set of trajectories. When only focusing
on the quality of the results, however, the algorithm might
run too slow. Reducing the amount of computations per
trajectory will speed up the process, but could affect quality
as well. Hence, the analyst also needs to find a trade-off
between quality and performance.

3.2 Requirements
In order to address the above challenges, we formulate a set
of requirements that our system shall implement. They translate
the abstract challenges into specific needs. The requirements are
independent of the actual algorithms (e.g., the map matching
algorithm) and visualizations (e.g., the specific representations
for errors and matching statistics) later selected in our approach,
and hence, could also serve as a basis for developing alternative
solutions.

The basis for working with trajectories is a map visualization.
This visualization needs to show the raw data, which would support
the analyst in spotting unreliable GPS measures and other issues.
Not least important is a visualization of the matching result,
to check the success of the algorithm. But just displaying the
successful matches, which is usually done for further analysis of
the data, is not sufficient. Also, displaying the matching errors,
failed matches, and uncertainties is relevant for optimizing the
matching process.

RQ 1: Map Visualization
Show the results of the map matching algorithm together with
the input data (raw trajectories and road network) on a map
and visualize errors as well as uncertainties of the algorithm.

The optimization process to find a good parameter selection
needs to be interactive, with quick visual feedback of the results.
Hence, analysts adapt the configuration of the map matching and
all preprocessing steps from the user interface and the visualization
updates automatically. To fulfill this, the algorithm and interface

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

need to respond quickly. To track the progress of the optimization,
an explicit representation of the evolution of matching statistics is
required (e.g., measures of precision and recall as well and runtime
performance). It should make transparent how the values developed
across the past iterations of running the algorithm.

RQ 2: Matching Process
Support an iterative configuration of the matching algorithm
in an interactive (hence, scalable) process, while providing a
monitor for quality and performance measures.

Finally, the analysts need to adapt the road network model, for
instance, to correct errors like missing road connections, refine the
route of a street, or the position and connectivity of intersections.
Since such edit operations could be costly in terms of interaction
effort, algorithmic support is desirable. This support, however,
should not be fully automatic to keep the analyst in full control.

RQ 3: Semi-Automatic Editing
Provide suggestions for an interactive improvement of the
road network model to improve the matching results.

These requirements cover all main features of the system we
present in this paper. They also reflect the challenges discussed
above: The interplay of the map visualization (RQ 1) and the
interactive matching process (RQ 2) addresses the trade-off between
precision and recall, the removal of unreliable measures, and the
trade-off between quality and performance. Further, we translate
the editing of the road network model to RQ 3.

4 APPROACH

Based on the requirements, we designed and implemented a
visual analytics process (see Figure 2). The process starts with
trajectory data and road network selection (Section 4.1). It allows
for data inspection and cleaning (4.2), before the map matching
is applied (4.3) and results can be visually explored (4.4). The
matching process is iteratively optimized (4.5) based on matching
quantities and qualities gained through interactive visualizations.
When dealing with large datasets, it is often advisable to start the
map matching with a smaller data sample. Once matching results
are satisfying, the algorithm can be applied (generalized) to the
remainder of the data (4.6).

4.1 Data Selection
The map matching process starts by loading a movement dataset
into the system. Movement data usually contain a set of moving
objects O, where each object o j ∈ O,1 ≤ j ≤ w,w = ‖O‖ holds
a set of trajectories T R = {tr1, . . . , trm}. A trajectory is a path
through space as a function of time. Although movement is
continuous, movement recording technology usually samples it
into a set of spatio-temporal measurements. With the recorded
measurements of length n, a trajectory tr is a sequence, where pi
is the spatial location of a measurement at time ti with i = 1, . . . ,n
(see Equation 1).

tr =
(
(p1, t1),(p2, t2), . . . ,(pn, tn)

)
with t1 < t2 < .. . < tn (1)

In our system, every moving object appears in a list that the user
can choose from. Also, the user needs to load a road network that

ST-MatchingData Selection
Inspection
& Cleaning

Result
Exploration

Generalization

Parameter
Configuration

Graph Editing

4.1 4.2 4.3 4.4

4.5.1

4.5.2

4.6

Fig. 2. The interactive visual map matching pipeline (labeled by sections).
Raw trajectory data is first loaded, inspected, and cleaned. Thereafter,
the data is registered to the road network using ST-matching. The user
can explore results and iteratively refine map matching parameters and
graph structures. Finally, the generalization step applies the optimized
setup to a larger dataset.

the trajectories will be mapped to. The prototype implementation
can handle graphs in the Open Street Maps graph format (.osm
files). These road networks can be configured and extracted from
open street map instances and contain, e.g., only major highways
or detailed information including even bicycle paths. When the
data is loaded, the user inspects the road network and the raw
trajectories in the map view (see Figure 3) and might activate and
deactivate different map overlays (see Figure 1, bottom). In the
background of the main view, map tiles provide geographic context,
either generalized to road segments, buildings, etc. or with satellite
imagery data. This context will later serve as a means to control
the correctness of the raw trajectory data and the network structure.
With this feature, we fulfill a first part of RQ 1.

4.2 Raw Data Inspection and Cleansing
To inspect the covered area and data quality, the user might
investigate the raw trajectories (further also referred to as trips)
before matching. In case data cleansing is necessary, the system
provides filtering options. In the trajectories shown in Figure 4 (a,
c), for example, there are different recorded trajectories with severe
signal dithering (imprecise trajectories at bends) and recording
anomalies (crosscutting trajectories). To overcome these issues as
shown in Figure 4 (b, d), the user can control two cutting thresholds.

The first threshold (distmax) defines the maximal distance
between two measurements allowed. Considering a recording
frequency of, e.g., 30 seconds and an upper speed limit of 70 km/h,

Fig. 3. The road topology of the inner city of Hangzhou (in orange)
overlays rendered map tiles. Nodes represent road intersections or
bending points and are marked with filled circles. Edges are colored
depending on their road types and speed limitations. Darker edges (in
overview, right) represent highways.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

a

c

b

d

Fig. 4. Parts (a) and (c) show the raw trajectory data, parts (b) and (d)
show the same regions with trajectories filtered with thresholds distmax =
580 m, nmin = 20.

the distance should not be larger than 580 m. Movement trajectories
might exceed this restriction due to signal dithering and wrong
records (outliers) as discussed above. Another reason is that
individual trips may not be clearly separated in the recording
and an unrecorded change of position between two recorded trips
can lead to abrupt and unexpected change of position.

The second threshold (nmin) defines the minimal number of
measurements within a trip. For example, for car trajectories, some
trips only comprise starting and stopping the engine at a parking lot.
They later cannot be matched to the road network. By increasing
this threshold, the user removes insignificant recordings.

We discard all trajectories conflicting with either of the two
criteria from further consideration in the map matching process.
Supported by immediate visual feedback, the iterative refinement
of the parameters allows for a stepwise improvement of the data
quality of input data and will improve the later map matching
accuracy.

4.3 ST-Matching

After the data is loaded, cleaned, and prefiltered it can be registered
to the road system using the ST-matching algorithm [13]. The
algorithmic procedure can be described in three steps. First, the
candidate preparation the measurements are projected to the
road network, resulting in a list of candidates. In the spatial and
temporal feature computation step, candidate features are derived
based on distance measures and constraints such as speed. This
results in a candidate graph with candidate points as nodes and
edges reflecting the shortest paths in the road network between
neighboring candidate nodes. Lastly, the result matching step
matches the trajectory to the highest rated path in the candidate
graph by evaluating the computed spatial and temporal features. In
the following, we summarize these steps as introduced by Lou et
al. [13].

4.3.1 Candidate Preparation
For every point pi, we compute the k closest candidate points
{c1

i ,c
2
i , . . . ,c

k
i }, where a candidate c j

i represents the point on an
edge e j

i that is geographically closest to pi with dist dist(pi,c
j
i)≤

candDist (Figure 5, left). All road network edges are indexed with
a uniform rectangular grid structure to speed up candidate querying.

4.3.2 Spatial and Temporal Feature Computation
This step can be split into a spatial and a temporal feature
computation. Two spatial features are computed and multiplied:

Fs(cs
i−1,c

t
i) = N(ct

i) ·V (cs
i−1,c

t
i), 2≤ i≤ n (2)

The observation probability N(c j
i) for each candidate is based on

the distance between measurements and candidates and is modeled
as normal distribution N(c j

i) = f (|pi− c j
i |,µ,σ). The transmis-

sion probability V (ct
i−1,c

s
i) (Equation 3) compares the distance

d(pi−1, pi) from a measurement pi−1 to pi (numerator) with the
distance w(cs

i−1,c
t
i) that follows the shortest path from candidate

cs
i−1 to ct

i through the road network (denominator). The path length
w(cs

i−1,c
t
i) is computed using the Dijkstra algorithm [24] to find the

shortest path. If it exceeds a certain threshold wmax, this connection
is discarded. An example where transmission probability becomes
necessary is shown in Figure 5, center: c1

i is closer to pi, but would
require taking a longer path.

V (cs
i−1,c

t
i) =

d(pi−1, pi)

w(cs
i−1,c

t
i)

(3)

The temporal feature computation takes into account traveling
speed. The average speed is computed with respect of the shortest
path in the road network between the candidate points.

v(cs
i−1,c

t
i) =

w(cs
i−1,c

t
i)

∆t(pi−1, pi)
(4)

Then, the algorithm calculates FT (cs
i−1,c

t
i) as a variant of the cosine

similarity between the speed constraints vector (v1,v2, ...,vm) along
the path (e1,e2, ...,em) from cs

i−1 to ct
i and a vector of same length

with m constant values v(cs
i−1,c

t
i) (for details see Lou et al. [13]).

In case the graph structure has no speed information assigned, we
assume an average speed of 40 km/h for inner city and 70 km/h for
outer city street types.

4.3.3 Result Matching
Finally, the algorithm decides which path to take through the n
sets of candidates. We compute a candidate graph that describes
all possible transitions between candidates of different sets (see
Figure 5, right). Using the temporal and spatial feature computation,
the ST-function is defined as follows.

F(cs
i−1,c

t
i) = FS(cs

i−1,c
t
i) ·FT (cs

i−1,c
t
i), 2≤ i≤ n (5)

The matching algorithm by Lou et al. [13] searches the best
matching path P, which maximizes the sum of ST-values with
1≤ s≤ k and 1 ≤ t ≤ k.

F(P) =
n

∑
i=2

F(cs
i−1,c

t
i) (6)

To evaluate the quality of successful matchings, we compute
the arithmetic mean over each found shortest path Pi, with
i = 1,2, . . . ,m (normalized by the length of the path) as a certainty
measure S.

S =
1
m

m

∑
i=1

F(Pi))

|Pi|−1
(7)

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 6

𝑒𝑖
1

𝑒𝑖
3

𝑒𝑖
2

𝑐𝑖
3

𝑐𝑖
1

𝑐𝑖
2

𝑝𝑖

𝑐𝑖
2

𝑐𝑖
1

𝑝𝑖−1

𝑝𝑖

𝑝𝑖+1

𝑐1
1

𝑐1
2

𝑐1
3

𝑐𝑛
1

𝑐𝑛
2

𝑐2
1

𝑐2
2

Candidate Preparation Feature Computation Result Matching

𝑝1‘s, 𝑝2‘s, …, 𝑝𝑛‘s candidates

Fig. 5. Illustrations for the three steps of ST-matching, according to Lou et al. [13]. (Left) Candidate points c1
i ,c

2
i ,c

3
i on edges e1

i ,e
2
i ,e

3
i for sampling

point p are selected. (Center) An example where transmission probability becomes necessary to decide whether c1
i or c2

i is more likely. (Right) A
candidate graph for a trajectory.

Fig. 6. The matched trips overlay gives information where and how many
trips were matched. This is double-encoded by edge thickness and color.
Because of the highly varying amounts of matched movements a log
scale is used.

As this usually leads to very small values, we compute uncertainty
score U = 1,000 · (1− S) for further evaluation of the matching
results.

In our implementation, we parallelize the processing to speed
up the matching process. The system automatically detect the
number of available CPU cores and handles each movement object
in an own thread. During the algorithm is executed, a progress
bar shows for each movement object how many trips are already
processed, how many trips were matched, and how many trips
failed (see Figure 1, A).

4.4 Result Exploration
After the raw trajectory data is registered (matched) to the road
network, users visually explore the results in the interactive map
view that shows the relative amounts of matched trips per road
segment (see Figure 6, edge thickness). In addition to the road
graph and raw trajectory visualizations described in Section 4.2,
users can investigate failed matchings and matching uncertainty
(Figure 7). This information is getting available already while
the matching algorithm is running. The map iteratively updates,
allowing the user to monitor results online and to interrupt and
restart the procedure if necessary. These features meet the goals
expressed in RQ 1.

For some of the trajectories, the matching process might fail
because (a) no candidates are found within distance candDist or
(b) the path length w(cs

i−1,c
t
i) between two found candidates cs

i−1
and ct

i exceeds threshold wmax. In both cases, the whole trajectory
is discarded; matching only parts of the trajectory would introduce
artifacts by artificial start and stop points of trips. An overlay of
the map view shows trajectory segments for which no candidates
are found in red. These errors appear often when the GPS tracking

error is high, the road network is incomplete, or bending roads
are sparsely sampled (see Figure 7, left). Trajectory segments for
which the path length between candidates is too high are displayed
in blue. These errors appear, e.g., when there are multiple edges
found on crossroads and multi-lane roads, or intersections points
are not correctly modeled (Figure 7, left). To support the user in
spotting the most significant errors, a table can be opened that
lists hotspots in descending order of severity for both error types.
The computation of these hotspots is based on the uniform grid
structure we use to rasterize the map and the number of trajectory
segments in each grid cell that cannot be matched (Section 4.3.1).
When selecting a hotspot in the table, the respective cell is shown
and highlighted in the map view (see Figure 8).

Similar to the error overlays, the uncertainty overlay repre-
sents aggregated uncertainty values (see Figure 7, right) using
a dichromatic gradient. High uncertainty values appear when
the trajectories can still be matched (candidates are found and
connectable) but measurements have a high spatial offset to these
candidates (Figure 7, right). There are multiple possible reasons
such as signal dithering or imprecise and oversimplified road
network representations. For example, uncertainty increases along
multi-lane roads when they are represented by a single edge in the
graph.

Visualizing the errors and uncertainties is not trivial because we
have to deal with hundreds of overlapping trajectory segments. To
address this issue, we apply kernel density estimation as proposed
by Lampe and Hauser [25], a variant of edge splatting [26]. Since
our approach is designed to work with a data sample (as discussed
in the introduction of Section 4), we assume that this sample
follows an underlying density distribution that reflects the ground
truth. We use a Gaussian kernel for each splat, with µ = 21 and
σ = 3 (in pixels). The resulting two-dimensional array contains a
density value for each pixel, which we finally map to color. Using
a fixed pixel size for the kernel is results in a stronger aggregation
when zoomed out and allows for a drill down by zooming in
(see Figure 9). The legends (see Figure 1, B, top-left) provide
information about the color mapping. We use a non-linear color
mapping (cube root function) to increase the color resolution for
lower to mid values.

4.5 Iterative Optimization
The panel to the right (see Figure 1, C) provides aggregated
matching statistics. It shows the percentage of trajectories for which
the matching failed split by error type, the average uncertainty per
trip (i.e., trajectory), and the average runtime time consumed per
trip in milliseconds. These values are encoded in line plots. They
are updated by adding new data points to the right when parameters

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7

Fig. 7. Kernel density estimation is used to compute a smooth density field for map matching errors and uncertainties. (Left) No-candidate errors in
red, path-length-exceeded errors in blue. (Right) A dichromatic gradient shows high uncertainty values in purple and moderate ones in ocher.

Fig. 8. A table lists the errors in descending order for a selectable error
type and allows quickly focusing on grid cells with error hotspots.

Fig. 9. Increasing detail with increasing zoom level is achieved by invariant
splatting kernel size (in pixels). This series shows an airport, where many
trajectories start and end (here taxi trips). The airports’ roads are not
fully modeled in the graph structure, leading to many unmatched trips.

are altered and the matching is rerun. Hence, the view presents
a history of matching runs and allows for tracking the success in
improving these quality metrics.

Datasets might differ in temporal recording resolution, signal
dithering, geographic area and road network, and objects’ move-
ment behavior. Hence, the first run of ST-matching might not
produce satisfying results and the error and uncertainty overlays
might show several hotspots that reflect insufficient matchings. To
adjust the map matching to these specifics, the user has three main
measures: (i) preprocessing the raw trajectory data, (ii) configuring
the ST-matching input parameters, and (iii) editing the road network

(graph) structure. The first measure is discussed in Section 4.2. In
this section, the remaining two measures are presented. With these
features, we finally support the interactive matching process and
the semi-automatic editing requested in RQ 2 and RQ 3.

4.5.1 Parameter Configuration

ST-matching has a set of input parameters, which the user can
iteratively adjust using different threshold sliders (see Figure 1, A).

As introduced in Section 4.3.1, candDist defines the geographic
range in which the algorithm searches for potential candidates. With
a larger radius for the query, more candidates are found, but there is
also a higher chance to incorrectly map the trajectory to a road. A
small candidate distance, on the other hand, results in fewer options.
In cases where signal dithering is high and the trajectory has a
high offset to the road, the correct edge segment might be missed.
There is a trade-off between precision (matchings are correct) and
recall (amount of trajectories that are matched). Figure 10 shows
an example of a crossing (a) and the raw trajectory data (b). When
candDist is high, trajectories can be matched, but this comes at the
price of high uncertainty values (c). Reducing candDist decreases
uncertainty but introduces candidate errors and hence leads to a
lower number of matchings (d).

The number of considered candidates k can be adjusted, too. For
example, with k = 5 the five nearest neighbors from the candidate
query with radius candDist will be taken into consideration. As a
drawback, increasing candDist may indirectly increase k. Both
adjustments may significantly affect the runtime of the map
matching procedure. According to Lou et al. [13], the runtime
complexity of the ST-matching is

O(nk2 ·m · log m+nk2) (8)

where n is the length of a trajectory and m is the number of
edges in the graph. A good combination of the two thresholds
highly depends on the underlying road network and data. For
example, in inner cities, when the road network is fine-grained,
it could be effective to consider a high number of candidates but
the distance can be moderate. In contrast, in remote areas where
roads are sparse, an opposite balance could work. Currently, our
implementation only allows for a global configuration. However,
we plan to extend this to local reconfiguration in the future, e.g.,
using the grid structure.

Lastly, the user can configure the maximal path length wmax. It
defines a threshold to connect found candidates in the graph. If two
candidates are found, but they are not connectable through graph

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 8

a b

c d

Fig. 10. Matching uncertainty at a crossroad. Image (a) shows the road
network, which simplifies the crossroad. In part (b), the raw trajectory
data is displayed. Part (c) shows the matching uncertainty, which is
higher for trajectories farther away from the graph edges. When reducing
the candidate distance in part (d), average uncertainty decreases but
matching errors appear.

edges within wmax, then they cannot be joined and the matching
for this setup is not successful.

It depends on the application case and goals which prepro-
cessing and matching settings are suitable. A carefully chosen
parameter setting may reduce both, errors and uncertainty.

4.5.2 Graph Editing
In addition to the parameter configuration, the map matching results
highly depend on the accuracy and resolution of the underlying
graph structure. When choosing the level of detail, the user again
faces a trade-off. With a more accurate graph, the chance to match
to certain roads is higher. However, with more edges more options
for the mapping appear. For imprecise trajectory data, this might
increase runtime but also the ratio of wrong mappings. Hence,
graph editing has to be done with care. It highly depends on the
application case if, e.g, side roads are necessary to include, or if it
is sufficient to map the data to main roads.

When the graph is loaded into the system, the users can visually
investigate and edit the graph. They might add new nodes and
edges, replace and reconnect them, or delete them. By showing
the rendered map tiles (satellite or generalized tiles), users are
supported to compare the roads in the graph with the underlying
scenery and thereby detect missing or misplaced nodes and edges.

The visual interface contains two editing buttons (see Figure 1,
top). By activating the add node and add edge button, the user can
insert nodes and edges as shown in Figure 11. When a node is
placed in proximity to an existing edge, the edge is split and the
node is inserted, respectively. To alter existing connections, the
user can also click on a node and relocate it, or select an edge and
delete/bend/reconnect it to another node. By default, the new road
segment gets assigned the road type and speed per majority vote of
the connected edges.

After the map matching is completed, the errors and uncertainty
visualization guide the user to hotspot areas. Often, errors might be
reduced by altering the graph structure. Users can either maintain

Fig. 11. In this example, the map tiles are used to identify missing edges.
The user can add an edge by activating the edge button and selecting
the nodes to connect.

manually correction or make use of automatic means. By clicking
on the error region (see Figure 12, 3), the system then gives further
explanation about the error and suggests fixes.

For errors of type no candidates found, an algorithm searches
the neighborhood of the respecting measurements and can automat-
ically insert an additional node. In Figure 12, the error occurred on
a bending road (see 1, 2). By making use of the automatic node
insertion, the nearby edge is split as follows. For all trajectories
involved in the error, the algorithm picks the measurement with the
maximal distance to the nearby edge, except the measurement is
closer to another edge. Next, the algorithm averages the identified
positions across all involved trajectories. After reviewing, the user
can choose to accept the suggestion or decline it (3, 4, 5). When
the map matching is re-executed, the error disappears (6).

An alternative option suggested to the user is to globally
increase the candidate distance threshold (3). In this case, again the
nearest edge is found and the distance from measurements to this
edge is computed. This distance is then used as new threshold.

4.5.3 Local Re-matching
After the graph structure has been edited, the trajectories have to
be re-matched. However, re-matching has to be carried out for
only those trips that intersect the edited region. The runtime of a
full re-execution of the ST-matching would reduce the interactivity
of the visual map matching process. The uniform grid structure
applied (Section 4.3.1) enables local re-matching. Each cell of
the grid indexes a geographical region that holds indexes of all
passing trajectories. When the graph is edited, the system finds
the intersecting cell. ST-matching is then re-calculated only for
associated trajectories.

4.6 Generalization

Usually, the iterative trajectory cleansing, the adjustment of the
graph structure, and the steering of matching parameters is carried
out with a subset of the available data. Having a dataset with
millions of trajectories, the interactivity would be low in our
prototype implementation and even difficult to achieve with a
highly optimized version. Users would have to wait long for the
matching process to finish. The approach thus follows the idea of
working with a subset that represents the whole dataset, optimizing
the settings accordingly. When the user is satisfied with the results
(depending on the application case and data quality), the remainder
of the dataset can be matched in the background. Although the
user will only see the visual results of matched roads after the
process is fully executed, global statistics are still updated online in
a progress tracking panel. After the process has finished, the user
investigates the results using the matched trips overlay and might
export the matched data for further analysis.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

1 2 3

4 5 6

Fig. 12. Labels 1-6 illustrate the editing process based on candidate errors. (1) The raw trajectory visualization shows a clear offset between
trajectories and the edge that represents the road. (2) The “no candidate found” error guides the user to these errors. (3) The user clicks on the error
hotspot (green dot). The tooltip shows the amount of errors (matching of 473 trajectories failed) at this position and suggests to add a node. (4) The
user can choose whether to accept the suggested node (red dot). (5) The node is automatically added. (6) Errors disappeared after local re-matching.

Fig. 13. (Left) Without cleansing and parameter adjustment the map
matching underlies many candidate errors (red) as well as path length
errors (blue). (Right) After the iterative adjustment (Iteration 9), the map
view shows much fewer errors.

When working in the interactive mode, there is a trade-off
between reliability and fast response times mitigated by the number
of sampled trajectories. To avoid overfitting the parameters of
the preprocessing and algorithm to a small sample of the data,
we recommend to work iteratively within the visual analytics
approach before finally applying the generalization step. Global
preprocessing and matching parameters can be estimated with a
few trajectories only. To test if the quality metrics remain stable,
the user can load additional trajectories step by step. If the quality
metrics vary significantly, the parameters need to be re-adjusted
and the success can be checked in another iteration of loading more
or different samples. Editing the road network might be done with
relatively many samples because the local re-matching speeds up
the update process.

5 CASE STUDY: MATCHING TAXI FLEET DATA

To demonstrate our approach in a realistic usage scenario, we report
a case study matching taxi trajectories to the road network of a city.
We use a dataset from a large taxi fleet, comprising more than 8,400
vehicles, in Hangzhou, China. These vehicles are equipped with
GPS sensors and tracking devices which record the position and
timestamp of the vehicle every 30 seconds. The dataset we study
was recorded in January, 2013 and covers one month of movement
information. This leads up to a massive dataset, containing about 24
million trajectories. In addition to the trajectory data, a prefiltered
OSM graph covers roads in the Hangzhou city area (see Figure 3).
This graph also contains speed information for different road types

such as inner city roads and highways. In the following, we report
on the iterative parameter and graph refinements, and on error and
uncertainty score reductions achieved.

5.1 Import, Inspection, and Initial Matching
We first load the meta data in our systems, giving us a list of all
8,400 taxis. From this list, we select a small sample of 20 taxis,
containing to around 60,000 trips. We then initially run the map
matching process with initial values as listed in Table 1 (Iteration 1).
While the matching process is proceeding, we can live-monitor
the increasing number of matched trips as well as the matching
success. For most taxis, around 74 % cannot be registered to the
road network and cause errors (see Table 1, Iteration 1).

TABLE 1
Iterative parameter adjustment and error rates of the case study. k

defines the number of candidates, candDist the maximal distance to a
candidate, NC the percentage of failed trips caused by no candidate

errors, and U the uncertainty score.

Iteration k candDist CE U Comment

1 3 20 74 920 Initial matching
2 3 20 63 916 After cleansing
3 3 500 1 902 Large candDist
4 3 150 16 904 Reasonable candDist
5 6 150 16 893 Increasing #candidates

6–8 6 150 7–12 893/4 Graph adjustments
9 6 150 7 894 Path length increase

Fig. 14. The statistics panel shows the trade-off between error rates,
uncertainty, and runtime. The values are based on the iterative global
parameter adjustments listed in Table 1 (iterations 1–5). Uncertainty and
errors are decreasing at the costs of higher runtime consumption.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 10

5.2 Filtering out Recording Inaccuracies
Taking a first glance at the raw trajectory data in the map view
shows us that there are many inaccurate measurements. This either
results from the low recording rate, gaps on the recording, or
signal dithering, which significantly reduces the matching success
(see blue and red errors in Figure 13, left). To clean the data, we
iteratively adapt the preprocessing thresholds. We first set distmax
between two trips to 580 meters. Additionally, in consideration
of the large dataset, we choose to accept a loss of some data and
set nmin to 10. This greatly reduces the amount of outliers and
filters out insignificant recordings, e.g., on parking lots. The result
of the data cleansing can be seen in Figure 4. Subsequently, we
re-executing the map-matching process. Error rates and uncertainty
both slightly decrease (see Table 1, Iteration 2).

5.3 Adjusting Global Parameters
The map view reveals the error hotspots. However, before we
start to locally fix major errors, we first test if a global parameter
changes can reduce error rates.

We first increase candDist from 20 to 500 meters and re-
execute the matching. The parameter changes lead to a significantly
higher runtime consumption, but we can already see that this
eliminates candidate errors almost completely (Table 1, Iteration 3).
It, however, can also lead to many wrong matchings as the road
grid in the inner city is fine-grained. This results in an increase of
path length errors as wrong matchings between candidates cannot
be connected. Hence, we correct candDist to a reasonable value
of 150 meters. This leads to a higher no candidate error, but
also reduces the path length errors. Lastly, we set the number of
candidates k from 3 to 6, which does not affect the error rate, but
improves the result quality, as can be seen in a lower uncertainty
score (Figure 14, Iteration 5). Additionally, we choose to increase
the maximum path length wmax. This results in a reduced amount
of path length errors (see Figure 16, Iteration 9).

5.4 Visual Investigation and Local Error Correction
The overview of the whole city gives us a first glance about
where candidate and path length errors appear. It seems that
there are multiple areas where the graph is not fully reflecting
the road network (Figure 7, red) as well as multi-lane streets where
individual matchings cannot be connected (blue). To investigate the
main cases, we activate the failed matching hotspot table. The first
candidate error leads us to a road with a strong bend (Figure 12). By
activating the graph overlay, we find out that this road is modeled
with only a few nodes and edges, leading to a severe offset of
the raw movement recordings and the graph edges. To control
and validate this situation, we activate the map tiles. The rendered
roads confirm our assumption. To correct the error, we use the
interactive graph editing capabilities of the system. Clicking on
the error visualization on the map, a tooltip appears and suggests
to add an additional node. We accept the suggestion and rerun
the map matching. The processing panel shows that only some of
the loaded trips have to be re-matched. After the re-matching is
executed (within 15 seconds), the error disappears in the map and
hotspot table accordingly.

The second highest error appears at an area where the graph
does not contain nearby roads. Taking a closer look, we cannot see
any road segments on the rendered road tiles either. We therefore
activate the satellite imagery, which reveals a parking areas and
some private roads. Accordingly, we adapt the road network by

Fig. 15. Typical candidate errors. From left to right: private property,
private property, sparsely sampled road, missing road connection.

inserting additional nodes and edges, which removes the error after
re-executing the matching process. Figure 15 shows areas with
high candidate error counts.

After iteratively investigating errors, validating the causes, and
editing the road network, we are able to decrease candidate errors
from 16 % to 6 % (see Figure 16). Lastly, we investigate an error
caused by a too high path length. The system proposes to increase
the path length to 2,600. We choose to accept this suggestion and
further decreased the errors, while the uncertainty score is nearly
maintained. Figure 13 (right) shows the relatively small amount of
remaining errors.

Fig. 16. Manual editing (starting at Iteration 6) led to a decrease of
10 % of the candidate errors and path length errors (from 3 % to 1 %).
Uncertainty score is nearly maintained (893→ 894).

5.5 Upscaling to 24 mio. Taxi Trips
As already mentioned, the Hangzhou dataset consists of around
8,400 taxis. Our 20 taxi sample thus only reflects a 0.24 % sample
of the taxis. To map the rest of the data, we activate the match in
background mode. An additional panel gives online updates about
the matching process. After the matching is finished, we investigate
the matched trajectories and export the edge-weight information
using the export function of the system for further analysis.

6 CONCLUSION

We presented a visual and interactive approach for map matching.
It allows users to interactively and visually clean trajectory data,
adjust matching parameters, and edit the underlying road network
structure. We showed the applicability of the approach in a case
study where we significantly reduced matching errors and matching
uncertainty. By visual exploration and adjustment of the road
network and data, the analyst can gain an increased understanding
of structures, data quality, and trade-offs. While the presented
techniques are already effective, there are still some limitations
and open challenges. For instance, the graph editing process
still happens case by case. These manual corrections are time

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 11

intensive. As an extension, more automated support would be
helpful. This could be done by integrating supervised machine
learning. Algorithms may detect similar cases to an edited instance
and make additional suggestions that the user accepts or declines.

ACKNOWLEDGMENTS

This work was funded by the European project Cimplex (grant
agreement no. 641191), by the joint project Data-Driven Intelligent
Transportation between China and Europe announced by the Min-
istry of Science and Technology of China, Zhejiang Provincial
Natural Science Foundation (No. LR14F020002), and by the DFG
SPP 1894 project Volunteered Geographic Information (VGI). We
also thank our collaborators for providing the data.

REFERENCES

[1] G. Andrienko, N. Andrienko, P. Bak, D. Keim, and S. Wrobel, Visual
analytics of movement. Springer Science & Business Media, 2013.

[2] F. Giannotti and D. Pedreschi, Mobility, data mining and privacy:
Geographic knowledge discovery. Springer Science & Business Media,
2008.

[3] W. Chen, F. Guo, and F.-Y. Wang, “A survey of traffic data visualization,”
IEEE Transactions on Intelligent Transportation Systems, vol. 16, no. 6,
pp. 2970–2984, 2015.

[4] G. Andrienko and N. Andrienko, “A general framework for using
aggregation in visual exploration of movement data,” The Cartographic
Journal, vol. 47, no. 1, pp. 22–40, 2010.

[5] N. Adrienko and G. Adrienko, “Spatial generalization and aggregation
of massive movement data,” IEEE Transactions on Visualization and
Computer Graphics, vol. 17, no. 2, pp. 205–219, 2011.

[6] N. Willems, H. Van De Wetering, and J. J. Van Wijk, “Visualization
of vessel movements,” Computer Graphics Forum, vol. 28, no. 3, pp.
959–966, 2009.

[7] N. Ferreira, J. T. Klosowski, C. E. Scheidegger, and C. T. Silva, “Vector
field k-means: Clustering trajectories by fitting multiple vector fields,”
Computer Graphics Forum, vol. 32, no. 3pt2, pp. 201–210, 2013.

[8] S. Kim, S. Jeong, I. Woo, Y. Jang, R. Maciejewski, and D. Ebert, “Data
flow analysis and visualization for spatiotemporal statistical data without
trajectory information,” IEEE Transactions on Visualization and Computer
Graphics, 2017, online first.

[9] R. Krüger, D. Thom, M. Wörner, H. Bosch, and T. Ertl,
“TrajectoryLenses—a set-based filtering and exploration technique for
long-term trajectory data,” Computer Graphics Forum, vol. 32, no. 3pt4,
pp. 451–460, 2013.

[10] N. Ferreira, J. Poco, H. T. Vo, J. Freire, and C. T. Silva, “Visual exploration
of big spatio-temporal urban data: A study of new york city taxi trips,”
IEEE Transactions on Visualization and Computer Graphics, vol. 19,
no. 12, pp. 2149–2158, 2013.

[11] M. A. Quddus, W. Y. Ochieng, and R. B. Noland, “Current map-matching
algorithms for transport applications: State-of-the art and future research
directions,” Transportation Research Part C: Emerging Technologies,
vol. 15, no. 5, pp. 312–328, 2007.

[12] S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk, “On map-matching
vehicle tracking data,” in Proceedings of the 31st International Conference
on Very Large Data Bases, ser. VLDB ’05. VLDB Endowment, 2005,
pp. 853–864.

[13] Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, and Y. Huang, “Map-
matching for low-sampling-rate GPS trajectories,” in Proceedings of
the 17th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, ser. GIS ’09. ACM, 2009, pp. 352–361.

[14] D. Guo, S. Liu, and H. Jin, “A graph-based approach to vehicle trajectory
analysis,” Journal of Location Based Services, vol. 4, no. 3-4, pp. 183–199,
2010.

[15] Z. Wang, M. Lu, X. Yuan, J. Zhang, and H. Van De Wetering, “Visual
traffic jam analysis based on trajectory data,” IEEE Transactions on
Visualization and Computer Graphics, vol. 19, no. 12, pp. 2159–2168,
2013.

[16] X. Huang, Y. Zhao, C. Ma, J. Yang, X. Ye, and C. Zhang, “TrajGraph:
A graph-based visual analytics approach to studying urban network
centralities using taxi trajectory data,” IEEE Transactions on Visualization
and Computer Graphics, vol. 22, no. 1, pp. 160–169, 2016.

[17] X. Wang, S. Zhao, and L. Dong, “Research and application of traffic
visualization based on vehicle GPS big data,” in Proceedings of the
Second International Conference on Intelligent Transportation. Springer,
2017, pp. 293–302.

[18] M. Lu, C. Lai, T. Ye, J. Liang, and X. Yuan, “Visual analysis of multiple
route choices based on general GPS trajectories,” IEEE Transactions on
Big Data, vol. 3, no. 2, pp. 234–247, 2017.

[19] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer, “Wrangler: Interactive
visual specification of data transformation scripts,” in Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, ser.
CHI ’11. ACM, 2011, pp. 3363–3372.

[20] J. Bernard, T. Ruppert, O. Goroll, T. May, and J. Kohlhammer, “Visual-
interactive preprocessing of time series data,” in Proceedings of SIGRAD
2012; Interactive Visual Analysis of Data, no. 081. Linköping University
Electronic Press, 2012, pp. 39–48.

[21] T. Gschwandtner, W. Aigner, S. Miksch, J. Gärtner, S. Kriglstein, M. Pohl,
and N. Suchy, “TimeCleanser: A visual analytics approach for data
cleansing of time-oriented data,” in Proceedings of the 14th International
Conference on Knowledge Technologies and Data-driven Business, ser.
i-KNOW ’14. ACM, 2014, p. 18.

[22] R. Krüger, D. Herr, F. Haag, and T. Ertl, “Inspector Gadget: Integrating
data preprocessing and orchestration in the visual analysis loop,” in
Proceedings of the EuroVis Workshop on Visual Analytics, ser. EuroVA ’15.
The Eurographics Association, 2015, pp. 7–11.

[23] Z. Wang, X. Yuan, T. Ye, S. Chen, J. Liangk, Q. Li, H. Wang, and Y. Wu,
“Visual data quality analysis for taxi GPS data,” in Proceedings of the
2015 IEEE Conference on Visual Analytics Science and Technology, ser.
VAST ’15. IEEE, 2015, pp. 223–224.

[24] S. Skiena, “Dijkstra’s algorithm,” Implementing Discrete Mathematics:
Combinatorics and Graph Theory with Mathematica, pp. 225–227, 1990.

[25] O. D. Lampe and H. Hauser, “Interactive visualization of streaming data
with kernel density estimation,” in Proceedings of the 2011 IEEE Pacific
Visualization Symposium, ser. PacificVis ’11. IEEE, 2011, pp. 171–178.

[26] M. Burch, C. Vehlow, F. Beck, S. Diehl, and D. Weiskopf, “Parallel Edge
Splatting for scalable dynamic graph visualization,” IEEE Transactions
on Visualization and Computer Graphics, vol. 17, no. 12, pp. 2344–2353,
2011.

Robert Krüger is a postdoctoral researcher at
the Institute for Visualization and Interactive Sys-
tems (VIS), University of Stuttgart.His research
interests are on visual analytics with a special
focus on movement and social media data. He is
a member of the IEEE.

Georgi Simeonov is a professional software de-
veloper. He received the BSc degree in computer
science from the University of Stuttgart.

Fabian Beck is an assistant professor at the
University of Duisburg-Essen. He received a
Diplom degree in computer science and a Dr.
rer. nat. (PhD) degree in computer science from
the University of Trier. His research focuses on
information visualization, visual analytics, and
software visualization. He is a member of the
IEEE Computer Society.

Thomas Ertl is a full professor of computer
science at the University of Stuttgart at the In-
stitute for Visualization and Interactive Systems
(VIS) and director of the Visualization Research
Center of the University of Stuttgart (VISUS). He
received a MSc in computer science from the
University of Colorado at Boulder and a PhD in
theoretical astrophysics from the University of
Tuebingen. His research interests include visual-
ization, computer graphics, and human computer
interaction. He is a life fellow of the IEEE.

