
JOURNAL OF IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ??, NO. ??, MONTH 2015 1

Visualizing Dynamic Hierarchies in
Graph Sequences

Corinna Vehlow, Student Member, IEEE, Fabian Beck, Member, IEEE Computer Society,
and Daniel Weiskopf, Member, IEEE Computer Society

Abstract—Graphs are used to model relations between objects, where these objects can be grouped hierarchically based on their
connectivity. In many applications, the relations change over time and so does the hierarchical group structure. We developed a
visualization technique that supports the analysis of the topology and the hierarchical group structure of a dynamic graph and the
tracking of changes over time. Each graph of a sequence is visualized by an adjacency matrix, where the hierarchical group structure is
encoded within the matrix using indentation and nested contours, complemented by icicle plots attached to the matrices. The density
within and between subgroups of the hierarchy is represented within the matrices using a gray scale. To visualize changes, transitions
and dissimilarities between the hierarchically structured graphs are shown using a flow metaphor and color coding. The design of our
visualization technique allows us to show more than one hierarchical group structure of the same graph by stacking the sequences,
where hierarchy comparison is supported not only within but also between sequences. To improve the readability, we minimize the
number of crossing curves within and between sequences based on a sorting algorithm that sweeps through the sequences of
hierarchies.

Index Terms—Dynamic graph, hierarchical graph, graph visualization.

F

1 INTRODUCTION

G RAPHS represent relations between objects, e.g., calls be-
tween methods of a software system, interactions between

biological entities, or social relationships between people. A
hierarchical group structure of these objects leads to a compound
graph that gives insight into the high-level organization. Clustering
methods are commonly used to obtain hierarchically organized
groups that have a higher density of edges within than to other
groups. The hierarchical group structure can be used to navigate
through or to abstract the graph [1]. There are several explicit vi-
sualization techniques for hierarchically structured graphs, where
the hierarchy visualization is either juxtaposed to, superimposed
on, or integrated with, the graph visualization [2].

In many applications, including software engineering or social
networks, relations change over time. There is much previous
work on the visualization of dynamic graphs in general [3] that can
be used for typical graph analysis tasks for graph evolution [4], [5].
Among existing approaches, several visualize a static hierarchical
group structure of the dynamic graph [2], i.e., one hierarchy for all
points in time. This might be sufficient if the changes of the graph
topology are only minor, i.e., only the edge weights change or
only few edges are added or removed. For significantly changing
dynamic graphs, in contrast, it is more suitable to determine
the hierarchical group structure for each graph of the sequence
individually. In this way, we can analyze changes at the high-
level organization of the graph. To identify whether the static or
the dynamic structure is more suitable, it is helpful to visualize
and compare both. In addition, different approaches exist to build
the dynamic group structure from the graph topology at only one
point in time or a subset of points in time. To compare these
structures, it is necessary to visualize them together. There are

• The authors are with VISUS, University of Stuttgart, Germany
E-mail: {corinna.vehlow, fabian.beck, weiskopf}@visus.uni-stuttgart.de.

Manuscript received July 29, 2015; revised November 19, 2015.

𝐺1 𝐺2

𝐻1 𝐻2

𝑡

∆ 𝐺1, 𝐺2 ≫ 0

∆ 𝐻1, 𝐻2 ≫ 0

Task II

Task I

Task III

Task IV Task I

Fig. 1. Illustration of the two dynamic components—graph topology and
hierarchical group structure—and the tasks connected to both.

some visualization techniques for dynamic hierarchies [6], [7],
but there is almost none for dynamic hierarchical group structures
of dynamic graphs [2]. In addition, there are no techniques that
support the comparison of multiple sequences of hierarchical
group structures. With this paper, we want to address these gaps.

The hierarchical group structure describes an abstraction of the
graph (indicated by the black arrows in Figure 1). Given that the
changes of the graph are severe (top row), the hierarchical group
structure changes over time as a consequence (bottom row). In
this case, the following analysis tasks arise (illustrated by colored
arrows in Figure 1):

I) Topology-to-Hierarchy Task: analyze the consistency be-
tween hierarchical group structure and graph topology of
individual graphs (green).

II) Topology-to-Topology Task: compare graph topologies over
time (blue).

III) Hierarchy-to-Hierarchy Task: compare hierarchical group
structures over time (purple).

JOURNAL OF IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ??, NO. ??, MONTH 2015 2

Fig. 2. Friendship network among students over time [8] from left to right, where the intensity of the relationship is encoded in the edge weights
mapped to the brightness of shades of gray, green (added edges), or purple (removed edges). For each point in time, the hierarchical group structure
is encoded within the matrix using indented nested contours and visualized by icicle plots attached to the matrix. To compare hierarchies, we draw
time transition edges that connect corresponding leaves of the icicle plots. Groups of friends change over time, while some groups remain relatively
stable, e.g., the group selected at the last time point and highlighted in yellow over all points in time.

IV) Change-to-Change Task: analyze how far changes in the
graph topology are reflected in changes in the hierarchical
group structure (red).

The first three tasks are supported by several visualization tech-
niques but only individually and not all by the same technique.
Using independent techniques to work on all these tasks can hinder
the workflow due to multiple separated views and inconsistent
representations. We developed a novel visualization technique
for dynamic hierarchically structured graphs supporting all of
the tasks. This also includes the Change-to-Change Task (red
double arrow), which is not supported by any of the available
techniques. This task arises from the combination of both dynamic
components, graph structure and hierarchy: large changes in the
graph topology (∆(G1,G2)� 0) imply large changes in the hierar-
chical group structure (∆(H1,H2)� 0). In comparison to existing
techniques for dynamic graphs that show only a static hierarchical
group structure of the graph (hence, only supporting the Topology-
to-Topology Task), our technique supports the visualization and
comparison of dynamic hierarchies over time. To the best of our
knowledge, there are only two techniques visualizing the dynamic
hierarchy in combination with the underlying dynamic graph [9],
[10]. However, these do not facilitate all four tasks. In partic-
ular, comparisons over time (Topology-to-Topology, Hierarchy-
to-Hierarchy, and Change-to-Change Tasks) are not sufficiently
supported using animation [10] or diagrams stacked in 3D [9]
without visually linking elements at successive points in time.

Using our technique (Figure 2), the dynamic graph is shown
as horizontal sequence of adjacency matrices. For the Topology-
to-Hierarchy Task, it is necessary to visualize both hierarchy and
graph in an integrated way. Our technique encodes the hierarchical
group structure in each of the matrices using visual nesting,
where edge densities within and between subgroups are encoded
in the matrix using a gray scale. To facilitate the analysis of
changes, time transitions between the hierarchical group structures
are visualized between the matrices using a flow metaphor; time
transitions are curves connecting matching vertices of successive
time steps. The design of our technique allows us to visualize
and compare different hierarchical group structures of the same
dynamic graph using comparison transitions (Figure 6). Hence, it
is even possible to compare a dynamic and a static hierarchical
group structure. This addresses the aspect of group structure com-
parison, which is a current research challenge [2]. To minimize the
edge crossings of time and comparison transitions, we extended a
sorting algorithm that reorders the internal nodes and leaves of

all hierarchies over several sequences considering proximity. To
highlight vertices that change with respect to their integration into
two hierarchies, we designed a dissimilarity metric that is mapped
to the transitions.

The integrated visualization of the dynamic hierarchical group
structure together with the dynamic graph supports the analysis
of both dynamic aspects. It allows us to investigate whether the
hierarchical group structure represents a reasonable abstraction of
the graph and whether the group structure changes in analogy to
the graph. We present the following contributions:

• an integrated visualization of the dynamic hierarchical group
structure together with the dynamic graphs (all tasks),

• a visualization that supports the comparison of dynamic
hierarchical group structures (Hierarchy-to-Hierarchy Task),

• an improved encoding of the hierarchical group structure in
an adjacency matrix representation (Topology-to-Hierarchy
and Change-to-Change Tasks),

• a sorting algorithm for sequences of hierarchies to facilitate
their comparison (Hierarchy-to-Hierarchy Task), and

• a transition-based metric that describes the dissimilarity be-
tween hierarchies (Hierarchy-to-Hierarchy Task).

In contrast to existing techniques, the design of our integrated
visualization allows us to handle all four tasks.

2 RELATED WORK

In this section, we summarize the work in fields related to our
visualization technique, including the visualization of dynamic
graphs, group structures, and flow-oriented data.

Dynamic graphs: Graph sequences are commonly visualized
using timeline- or animation-based methods for node-link dia-
grams or adjacency matrices [3]. We decided to use adjacency
matrices instead of node-link diagrams to visualize the dynamic
graph because it allows us to encode the hierarchical structure
within each graph without visual clutter and—at the same time—
visually link neighboring graphs for comparison using a flow
metaphor. Intra-cell timeline techniques [11], [12] and layered
matrix visualizations [13], [14], [15], [16], [17] are examples of
matrix-based approaches. In layered approaches, the matrices are
either juxtaposed in 2D or stacked into 3D. Intra-cell timeline
methods only support the visualization together with the global
hierarchical group structure—static over the full time span, e.g.,
by attaching a layered icicle-like representation to the matrix [11].

JOURNAL OF IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ??, NO. ??, MONTH 2015 3

They are not suitable for the visualization of dynamic hierarchical
group structures and varying vertex order.

Layered matrices, in contrast, allow us to sort the vertices for
each graph of the sequence individually based on its hierarchical
group structure. So far, this approach was mainly used for dynamic
graphs without an additional hierarchical group structure [13],
[14], [18] or for dynamic graphs with a static hierarchical group
structure [15], [16], [17]. The matrices representing individual
points in time are placed next to each other in one dimension [14],
[18], they can be arranged in radial layers [15], [16], [17], or
stacked in three-dimensional space [13], [14]. The static hierar-
chical group structure of a dynamic graph can be visualized using
hierarchy representations, such as a tree node-link diagram [15],
indented plot [16], or icicle plot [17], attached to, or superimposed
on, the layered dynamic graph representation [2]. However, these
techniques do not support the visualization of a dynamic hierar-
chical group structure.

Dynamic group structures: The visualization technique for
dynamic group structures in dynamic graphs by Vehlow et al. [19]
is similar to our technique. However, their method represents the
graphs by node-link diagrams and it only supports the visualiza-
tion of flat—but not hierarchical—group structures [2].

Only two techniques visualize the changes of both the hier-
archical group structure and the graph topology. The animated
node-link technique by Reitz et al. [10] uses the hierarchical group
structure to control the animation and to automatically aggregate
subhierarchies that do not change. Although only those parts of
the data that change are presented in detail, it is still difficult to
perceive and understand the changes in the animation. Moreover,
it is difficult to keep track of the vertices’ placements in the
course of the sequence of hierarchical group structures, especially
as a vertex may not even be visualized at some points in time.
Ahmed et al. [9] visualize each hierarchically structured graph
using radial representations and stack them in 3D. Because of the
3D positioning of the layers, it is difficult to keep track of vertices,
their relations, and their hierarchical placement over time. Also
the change of the layout over time makes it difficult to compare
the graphs because no visual links connect matching elements
between successive points in time. Within both techniques, it is
hard to monitor the changes in the hierarchical group structure
as well as the graph topology and to investigate the consistency
between the hierarchical group structure and the graph topology.
In contrast, our technique supports all these tasks due to its design,
the dissimilarity metric, and the sorting algorithm.

Hierarchical group structures are often visualized using tree
visualization techniques [20], [21]. The most common approaches
include node-link diagrams, stacking approaches like icicle or
indented plots, or nesting approaches like treemaps. Graham and
Kennedy [22] summarize visualization techniques for pairs of
trees but also sequences of trees. They classify existing approaches
into five categories: edge drawing, coloring, animation, matrix
representation, and agglomeration. Using edge drawing, two hi-
erarchies visualized—e.g., as icicle plots—are juxtaposed and
matching leaves are connected by straight [23] or bundled [24]
links. Coloring approaches, such as TreeJuxtaposer [25], visualize
links by color coding. Within matrix representations, such links are
visualized using an adjacency matrix with two hierarchies attached
to it [26]. Agglomeration methods merge two hierarchies into one
representation; some approaches encode differences visually [27],
[28], [29], others superimpose both tree visualizations [30]. Tech-
niques that support the comparison of multiple hierarchical group

structures mainly use edge drawing [7], [31], [32] or coloring [6],
[33].

CodeFlows [7] visualizes the temporal evolution of hierarchies
using juxtaposed mirrored icicle plots. Alternatively, the hierar-
chies can be visualized using node-link diagrams on individual
planes stacked in 2.5D [31] or 3D [32]. Using coloring, hierarchies
are arranged as small multiples with all differences to a reference
hierarchy color-coded within each hierarchy visualization [6],
[33]. Our visualization technique uses an edge-drawing approach
to compare juxtaposed hierarchically structured graphs.

Flow-oriented visualization: There are several flow-like vi-
sualization techniques that are visually similar to our technique,
employing a timeline from left to right where groups of elements
literally flow from one state to the other [34], [35], [36], [37].
In contrast to our technique, these techniques do not visualize
graph sequences. Sankey diagrams [36] and ThemeRiver [35]
show continuous flow-like shapes, whereas in Domino [34] and
ConnectedCharts [37] the flow is interrupted by small charts.
Domino [34] visualizes multiple interconnected datasets—e.g.,
heatmaps shown as matrix—aligned horizontally, where rela-
tionships between them are encoded by links. In Connected-
Charts [37], multidimensional multivariate data is displayed using
multiple charts (bar charts and scatter plots) and relationships
between them are represented by curves to show conceptual links.
An alternative to flow-like representations of transitions is to use
visual transition matrices instead [38].

3 OVERVIEW AND DESIGN CHOICES

Our visualization technique aims at the visual analysis of the
changes within a dynamic graph and its hierarchical structure,
especially the consistency between the hierarchical group structure
and the graph topology. This requires two types of comparisons:
the comparison of successive graphs as well as successive hierar-
chical group structures. Different group structures can be defined
on the dynamic graph. Hence, the hierarchy comparison task
involves not only the visual comparison of adjacent hierarchically
structured graphs within sequences, i.e., of successive points in
time, but also between graph sequences, i.e., of different hierarchi-
cal group structures of the same dynamic graph sequence. These
could include several dynamic and static hierarchical structures.

To support these aims, our visualization technique combines a
small multiples representation of the dynamic graph, icicle plots,
contours, and edge-based comparisons of hierarchies. Although
the individual visual components are not new by themselves,
the combination of them is novel. However, the naive hybrid
of these techniques implies several problems with respect to the
tasks mentioned in Section 1. Therefore, we adjusted the different
components to a visualization technique that is applicable to
dynamic hierarchically structured graphs and supports all tasks.

First, naive contours within adjacency matrices—
superimposed contours without changing the layout of the
matrix—do not scale very well with respect to the graph size,
i.e., they are barely recognizable if rows and columns are only
one or few pixels wide. For better scalability, we developed an
extended encoding of the hierarchical group structure within the
matrix using indentation and edge density mapping. Second, it is
difficult to compare graph topologies by using small multiples of
common adjacency matrix representations. Topological changes
are therefore encoded within each matrix as well as in an
aggregated way between them. Third, using the edge-based

JOURNAL OF IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ??, NO. ??, MONTH 2015 4

Fig. 3. Illustration of the visualization technique. (a) Our visualization consists of a matrix of adjacency matrices, where the time points of the
dynamic graph are aligned horizontally and each row represents a sequence with a different hierarchical group structure of the dynamic graph.
(b) The hierarchical group structure of each graph is encoded within the matrix using indented nested contours, edge density mapping, and
attached icicle plots. (c) Changes between adjacent hierarchies are visualized by connecting the leaves of the icicle plots with cubic Bézier curves,
where the hierarchy dissimilarity is mapped to color (for individual vertices) and visualized by a bar (for the complete hierarchy).

approach to compare hierarchies, the comparison can become a
demanding task for more than one pair of hierarchies, because the
user needs to investigate all edges and hierarchies to understand
how pairs of hierarchies are dissimilar. Mapping our developed
dissimilarity metric to individual edges as well as encoding
the total dissimilarity between two hierarchies helps tackle this
problem. Not least, a naive sorting of vertices based on the
hierarchical group structures poses a problem for the hierarchy
comparison and tracking of vertices within and across sequences
due to the large amount of crossing edges. To minimize these
crossings, we extended a sorting technique for the comparison
of two hierarchies toward the comparison within and between an
arbitrary number of sequences of variable length.

Visualizing the dynamic graph: We decided to use a time-
to-space mapping instead of animation, because animation comes
with higher cognitive load when trying to track elements over
time to understand changes [39]. Moreover, the small multiples
representation allows us to extend our technique to the comparison
of multiple sequences. Not least, using a timeline layout has the
advantage that we can visualize the time transitions between the
hierarchical group structures of adjacent graphs explicitly using
a flow metaphor. In particular, the dynamic graph is visualized
using a layered matrix approach similar to Matrix Cubes [13]. In
contrast to Matrix Cubes, we arrange the matrices horizontally
in one dimension rather than in three dimensions and allow for
different vertex orders based on the time-dependent hierarchical
group structure rather than using a global sorting. In contrast to
our approach, Matrix Cubes does not visualize any group structure
explicitly. If different sequences of hierarchical group structures
are defined on the same dynamic graph, we stack these sequences
vertically (Figure 3(a)).

Adjacency matrix visualization: Adjacency matrix represen-
tations have a linear order of vertices, which allows us to include
visual links between hierarchically structured graphs to track the
vertices over time. Alternative graph representations that use a
linear arrangement of vertices include parallel edge splatting [40],
TimeArcTrees [41], or adjacency lists [42]. Although adjacency
matrices require more space than these alternatives, we decided to
use adjacency matrices for several reasons: First, matrices can re-
veal group structures and substructures (clusters) if the vertices are
ordered appropriately [43] and the hierarchical group structure can

be encoded within each graph representation individually. Second,
using matrices, we can easily extend our technique to compare
the hierarchical group structures not only within a graph sequence
but also between different graph sequences. Third, matrices are
well suited for dense graphs and support the visual encoding of
edge densities within and between groups, which improves the
scalability.

Each graph of a sequence is visualized using an adjacency
matrix with the hierarchical group structure encoded in the matrix
using nested contours (Figure 3(b)) like in TreeMatrix [44]. In
contrast to TreeMatrix, in our adjacency matrices, the contours are
indented with each hierarchy level. The same holds for the internal
nodes of the icicle plots attached to the matrix. Moreover, we
visualize the density of relations within and between groups of the
hierarchical group structure within the matrix using a gray-scale
mapping. Our extended visual mapping of the hierarchy within
the matrix using indentation and density encoding reinforces
the perception of the hierarchical group structure. Hence, our
technique supports the perception of the consistency between the
hierarchical group structure and the graph topology.

Comparison: Our application scenario involves the compar-
ison of hierarchical group structures within and between se-
quences of changing hierarchies. Since we want to visualize the
graph topology together with its hierarchical group structure,
the hierarchy comparison approaches “matrix representations”
and “agglomeration approaches” [22] are not suitable, especially
considering that we need to visualize more than two hierarchical
group structures. The comparison is facilitated using an edge-
based approach using a flow metaphor (Figure 3(c)) similar to
CodeFlows [7]. Within CodeFlows, hierarchies are visualized by
icicle plots [45] facing each other such that the matching leaves in
neighboring hierarchies can be connected by visual links.

We use cubic Bézier curves as visual links to generate con-
tinuous transitions between neighboring groups and subgroups.
To integrate this hierarchy comparison into our single- or multi-
sequence visualization of dynamic graphs, icicle plots are attached
to the matrices at all sides and matching leaves are connected by
horizontal (vertical) visual links for the within-sequence (between-
sequence) comparison (Figure 3(a)). Visualizing the transition
between hierarchically structured graphs allows us to track vertices
along a sequence and across sequences. Moreover, we visualize a

JOURNAL OF IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ??, NO. ??, MONTH 2015 5

dissimilarity metric for individual vertices and complete hierar-
chies using color mapping and bars, which helps identify changes
in the hierarchical group structure.

4 VISUALIZATION TECHNIQUE

In this section, we detail the design of our visualization tech-
nique introduced in the previous section. After describing our
data model, the two visual components—the representation of
hierarchically structured graphs as well as time and comparison
transitions between them—are presented individually. Then we
describe our sorting strategy that aims at minimizing the number
of crossing transitions within and between the sequences. Finally,
we summarize the interaction techniques supporting the data
analysis.

4.1 Data Model
A dynamic graph G := (G1, . . . ,GT) is defined as a sequence of T
subsequent graphs Gt . We model each of these graphs as a directed
weighted graph Gt =(Vt ,Et) that consists of a set of vertices Vt and
a set of edges Et ⊆Vt×Vt . Thereby, each edge e j ∈ Et describes a
tuple of two vertices (vi1 , vi2) and each edge is assigned a weight
we j ∈ R+. The number of vertices |Vt | may change over time. In
the following, V denotes the global set of vertices containing all
vertices v in any Vt .

An associated hierarchical group structure H := (H1, . . . ,HT)
of the dynamic graph G is defined as a sequence of T subsequent
hierarchies Ht . The hierarchical group structure Ht of the vertices
v ∈ Vt can be defined as a family of sets Ht = {S0,S1, . . . ,SL},
where each Sl1 is a set of other group elements Sl2 ∈Ht , with l1 6=
l2 or graph vertices vi ∈ Vt . These groups represent the elements
of a hierarchy where S0 forms the root element and the vertices
vi ∈ Vt the leaves. For all Sl from Ht where l = 1, . . . ,L, there is
exactly one parent group Sl′ ∈ Ht with Sl ∈ Sl′ ; since also each
graph vertex is contained in exactly one parent group, the same
applies to all vi ∈Vt (∀vi ∈Vt ∃! l′ ∈ {0, . . . ,L} : vi ∈ Sl′).

Our visualization technique supports the visual comparison of
M different sequences of hierarchical group structures Hm, with
m = 1, . . . ,M, for the same dynamic graph G . Therefore, the com-
parison of hierarchical group structures Ht within a sequence Hm1

(comparing Hm1,t with Hm1,t+1) and between sequences Hm1 and
Hm2 (comparing Hm1,t with Hm2,t) is supported. Such sequences
could be the result, e.g., of different clustering algorithms. Also
the comparison of a local (time-dependent) with a global (static)
hierarchical group structure is conceivable. If H is static, all
Ht ∈H are identical.

4.2 Dissimilarity Computation
The comparison of hierarchies within and between sequences can
be supported on a higher level using a dissimilarity metric. In the
context of software clustering, different global metrics for hierar-
chy similarity were suggested, e.g., based on edit operations sim-
ilar to the Levenshtein distance [46]. The END framework [47]
is based on similarity metrics that estimates the distance between
two flat decompositions and compares the hierarchies level by
level. TreeJuxtaposer [25] and other comparison approaches [48]
calculate the similarity of two internal nodes of the hierarchies
using the set-based Jaccard coefficient. As only the leaves are
included in the score calculation, the hierarchical structure is
ignored. Consequently, two subgroups containing the same leaves

Fig. 4. Illustration of the calculation of the dissimilarity between the
integration of v10 within the two hierarchies H1 and H2. Left: Transitions
between H1 and H2, where the path lengths p from V10 to any other vi or
internal node Sl are included in the layered icicle plot. Right: Summary
of path lengths p and closeness values c = 1/(p−1). The dissimilarity is
based on the cosine similarity between~c1 and~c2.

are classified as similar even if their structure may differ sub-
stantially. Bremm et al. [6] extended this score by incorporating
the inner nodes of the hierarchical structure. All these metrics
support only the calculation of the distance (similarity) between
two hierarchies or subgroups but do not describe the difference of
integration of a vertex into two hierarchies, i.e., where the vertex
is positioned in the hierarchy.

In contrast, the novel metric we designed is able to compute
a dissimilarity value for each vertex v describing the difference
of containment of v in two hierarchies (hence, transition edge). In
particular, the metric can be used to compare the integration of a
vertex v ∈Vt ∪Vt+1 into two hierarchies Hm,t and Hm,t+1 (or v ∈Vt
into Hm1,t and Hm2,t). For simplification, these hierarchies are only
referred to as H1 and H2, with V1 and V2 as the vertex sets of
the respective graphs G1 and G2 (for H1 = Hm1,t and H2 = Hm2,t ,
G1 = G2). This dissimilarity can be described based on the cosine
similarity:

dissim(v, H1, H2) = 1−
−→c1 ·−→c2

|−→c1 | |−→c2 |
,

where −→c1 and −→c2 are vectors of length |V ′|−1 with V ′ = |V1∪V2|.
Each component of these vectors describes the closeness of v to
all vi ∈V1∪V2, with v 6= vi. The closeness between two vertices vi1
and vi2 in a hierarchy H is defined as c(vi1 , vi2 , H) = 1/(p− 1),
where p describes the length of the shortest path in H from vi1 to
vi2 . The shortest possible path length is therefore p = 2 and the
longest path length is p = 2(d− 1), where d is the depth of the
hierarchy H. In case that vi1 or vi2 is not contained in V1∩V2, p is
set to the maximum path length. We use 1/(p− 1) as closeness
metric, to maximize the possible value range and to increase the
weight on the direct neighbors of v. Hence, using this metric,
changes within any subhierarchy Sl , with v ∈ Sl , have a stronger
influence on the dissimilarity dissim(v, H1, H2) than changes in a
subhierarchy S′l , with v 6∈ S′l .

Figure 4 illustrates the calculation of the dissimilarity for
vertex v10 between two hierarchies of depth d = 4. The dissim-

JOURNAL OF IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ??, NO. ??, MONTH 2015 6

(a) (b) (c) (d) (e)

Fig. 5. Each graph Gt is visualized using an adjacency matrix, where Ht is visualized as indented icicle plot attached to the matrix (a). To encode
the hierarchical group structure Ht within the matrix, identation (b) and nested contours (c) are used. (d) The density of edges within and between
groups of the hierarchical group structure Ht is mapped to the gray value of the respective areas in the matrix. (e) Edges added (removed) compared
to the last time point Gt−1 are highlighted in green (purple).

ilarity metric for a single vertex v can be used to compute the
dissimilarity between two hierarchies:

dissim(H1, H2) =
1
|V ′|

|V ′|

∑
n=1

dissim(vi, H1, H2).

4.3 Matrix–Hierarchy Visualization
Our matrix visualization incorporates three components together
with the graph topology Gt itself: the hierarchical group structure
of Gt , edge densities within and between groups, and topological
changes compared to the previous graph Gt−1.

Hierarchical group structure: To analyze the consistency
between the graph topology Gt and the hierarchical group structure
Hm,t , both are integrated within a matrix representation (Fig-
ure 5(a)), where vertices vi are represented by rows and columns.
The vertex order depends on the hierarchical structure Hm,t . Each
edge e j := (vi1 , vi2) is encoded by a square within the matrix. The
hierarchical group structure Ht of a graph Gt is visualized using
icicle plots attached to the matrix but also within the matrix using
nesting. First, the rows and columns are indented with respect
to their hierarchical group structure (Figure 5(b)). Second, the
internal nodes Sl ∈ Ht are visualized as contours surrounding
the respective rows and columns (Figure 5(c)). The contours
representing the group elements Sl are indented with respect to
their depth in the hierarchy. Within both the matrix and icicle
plot, the hierarchical group structure is encoded with red, where
within the icicle, the depth of the internal nodes of the hierarchy
is mapped to brightness (Figure 6).

Edge density: To support the analysis of the consistency
between the graph topology and the hierarchical group structure,
the density of relations within and between groups Sl of the
hierarchy are encoded within the matrix (Figure 5(d)). The density
ρl = |El |/(|Vl |2− |Vl |) with Vl the set of leaves of group Sl and
El the set of edges among vertices in Vl is mapped to a gray
value used to fill the contour for Sl : groups Sl with ρl = 0
(ρl = 1) are white (dark gray). The groups Sl of the hierarchy show
up as squares on the diagonal. To analyze how strongly a graph is
coupled and how far subgroups are connected, for any two groups
Sl1 and Sl2 that have the same parent group, we also visualize the
density ρl1,l2 = |El1,l2 |/(|Vl1 ||Vl2 |) with Vl1 (Vl2) the set of leaves
of group Sl1 (Sl2) and El1,l2 the set of edges that connect a leaf of
Sl1 with a leaf of Sl2 , or vice versa. Both densities ρl and ρl1,l2
are based on the definition of the density in directed graphs. We
decided for this restriction to not fragment the adjacency matrix

too much. The density ρl1,l2 is mapped to the rectangle described
by the two groups Sl1 and Sl2 using the same gray-scale mapping
as for ρl .

Using our visual mapping of the density within and between
groups, we can immediately analyze if the hierarchical group
structure matches the graph topology. If the hierarchical group
structure is derived based on a clustering algorithm, the squares on
the diagonal will be much darker in comparison to the surrounding
rectangles. The reason is that clustering algorithms usually aim at
detecting groups and subgroups of vertices vi that are more densely
connected among each other than with vertices of other groups.

Topological changes: To support the tracking of changes in
the graph topology, within each of the graphs Gt with t > 1, the
differences to the previous graph Gt−1 are encoded explicitly if
activated by the user. Edges that were added or removed compared
to the previous point in time (t− 1) are highlighted using green
or purple, respectively (Figure 5(e)). The weight we j of an edge is
mapped to the brightness of the cell. For edges that remain, we j

is mapped non-linearly to a gray scale . For added or
removed edges, the edge weights we j are mapped in similar
fashion as for the gray scale, adapting not only value, but also
saturation. In contrast to the remaining and added edges (shown
as filled squares), for removed edges, we only draw the border of
the square. Alper et al. [49] use the inner and outer area of the cell
to encode the edge weights of the two graphs using the same color
map. Our technique aims at highlighting points in time at which
many edges are added or removed.

4.4 Transitions
Our visualization technique shows the dynamic graph G :=
(G1, . . . ,GT) using a timeline approach [3], where the matrix–
hierarchy visualizations are arranged horizontally (Figure 3). If
more than one sequence of hierarchical group structures Hm
is defined, M sequences (timelines) representing G are stacked
vertically. As mentioned before, the number of vertices |Vt | may
change over time. If |Vt | < |V |, the matrix is scaled such that it
fills the maximum available space.

Our visualization approach aims at the visual analysis of
changes in the graph topology as well as the hierarchical group
structure. With the graphs next to each other, it is still difficult
to compare the hierarchical group structure between neighboring
graphs, although the hierarchical group structure is encoded within
each of the graph representations. To facilitate the analysis of
changes in the hierarchy, we use an edge-drawing approach for the
comparison of hierarchies [22] that are visualized as icicle plots

JOURNAL OF IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ??, NO. ??, MONTH 2015 7

Fig. 6. Dynamic graph (n = 11 and T = 3) visualized together with its
local (dynamic) and global (static) hierarchical group structure. The
transitions of adjacent hierarchical group structures H1 and H2 are
shown as cubic Bézier curves, where the dissimilarity dissim(v, H1, H2)
is mapped to the color of the curves. The bars spanning between
neighboring matrices visualize the dissimilarity dissim(H1, H2) between
the hierarchies. The green (purple) bars at the top show the percentage
of added (removed) edges from Gt to Gt+1.

attached to matrices such that edges (transitions) can be drawn in
the space between the matrices (Figure 6).

Using an edge-drawing approach, time and comparison tran-
sitions between two hierarchies Hm,t and Hm,t+1 or Hm1,t and
Hm2,t—in the following only referred to as H1 and H2—are visu-
alized explicitly (Figure 6). In particular, each transition from is
drawn using a cubic Bézier curve. In doing so, we generate smooth
transitions between successive hierarchical group structures . The
dynamic graph together with the transitions of hierarchical group
structures is reminiscent of a flow—as already used for group
evolution in other contexts [35], [36], [50]—employing a timeline
from left to right where vertices v literally flow from one hierarchi-
cally structured graph to the other. Similary, rows are connected.
Therefore, our visualization of transitions helps track a vertex and
its relations.

To help identify vertices v whose placement within neigh-
boring hierarchies H1 and H2 changes, the dissimilarity
dissim(v, H1, H2) is mapped non-linearly to the color of the
curves using a blue single-hue color map (Figure 6). To
make vertices with high dissimilarity visible even when many
edge crossings occur, the time and comparison transitions are
sorted and drawn as opaque curves in ascending order based
on their associated dissimilarity value. The total dissimilarity
dissim(H1, H2) between two neighboring hierarchies H1 and H2 is
visualized by a bar that spans between the two matrices (Figure 6).
The dissimilarity value is thereby mapped to the length of a blue
bar.

The visualization of the dissimilarities on vertex and hierarchy
level helps immediately detect transitions, between neighboring
hierarchies within or between sequences, where many changes
occur. The exact dissimilarity values for the vertices are available
via tooltips. Hence, the dissimilarity can be used for the identifica-
tion and analysis of differences in the hierarchical group structure
on the higher level, before drilling down and investigating the
differences between the two graphs and their hierarchical group
structures in more detail.

The total amount of added padd and removed prem edges
between two successive graphs Gt−1 and Gt is visualized by

Fig. 7. Illustration of the sorting algorithm. (a) A dynamic graph with T = 3
and M = 3 sequences Hm, where the hierarchies in H1 and H2 change
over time and H3 models a global hierarchy. Here, the hierarchical group
structures Hm,t are named based on their global hierarchy IDs Hi. The
hierarchies Hi are scanned line by line. (b) Based on the sweep, we
derive the sequence of sorting steps, where each hierarchy has one or
more dependencies illustrated by links in (a).

two additional bars that span between the two matrices just
above the first sequence (Figure 6). The amount of added edges
padd = |Eadded|/|Et | describes the percentage of edges in Gt that
are not part of Gt−1. Vice versa, prem = |Eremoved|/|Et−1| describes
the percentage of edges in Gt−1 that are not contained in Gt . The
value padd (prem) is mapped to the length of a dark green (purple)
bar.

4.5 Sorting of Vertices
The hierarchy transitions are supposed to improve the analysis
of changes or differences between hierarchical group structures.
However, the readability of the visualization suffers with increas-
ing number of crossing time and comparison transitions. To ad-
dress this problem, we integrate an extended sorting algorithm that
minimizes edge crossings within and between sequences. There
are sorting algorithms that perform edge crossing minimization
between two non-binary hierarchies [24]. Only few techniques
extend this approach to a sequence of hierarchies. Dwyer and
Schreiber [31] apply an edge crossing minimization to their
dynamic phylogenetic tree visualization, but their approach can
only be applied to a single sequence of binary trees. To the best
of our knowledge, there are no techniques that sort dynamic non-
binary hierarchies for more than one sequence. In contrast, our
sorting algorithm allows us to sort non-binary hierarchies within
and between different sequences Hm.

In our visualization, the different sequences of hierarchically
structured graphs are not visualized independently but are also
connected via comparison transitions. Therefore, it is not sufficient
to sort each of the sequences individually. Instead, our sorting
algorithm considers all within- and between-sequence transitions,
sweeping through all sequences by scanning them line by line
(indicated by the yellow arrow in Figure 7(a)).

Figure 7(a) shows an example of a dynamic graph with T = 3
and M = 3 sequences Hm, where the hierarchies H1,t ∈H1 and
H2,t ∈H2 change over time and H3 models a global hierarchy
defined over the complete dynamic graph G . As H3 models a
global (static) hierarchy, all hierarchies H3,t ∈H3 should have the
same order of vertices. Therefore, they are incorporated only once
(H7) in the sorting process with the respective dependencies. De-
pendencies between hierarchical group structures occur between
any two neighboring hierarchies of the sequences, i.e., between

JOURNAL OF IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ??, NO. ??, MONTH 2015 8

(a) Without sorting (1,778 crossing transitions)

(b) With sorting (257 crossing transitions)

Fig. 8. Our visualization technique without (a) and with (b) the applied
sorting algorithm to minimize the number of crossing transitions.

any two hierarchies Hm,t and Hm,t+1 or Hm,t and Hm+1,t (indicated
by the visual links in Figure 7(a)).

To sort all hierarchies taking into account all dependencies,
the sweep is performed in both directions—doing a forward and
backward sweep. The algorithm first performs a forward sweep
(indicated by blue arrows in Figure 7(b)) from the first hierarchy
H1 to the last hierarchy H7, which is followed by a backward
sweep (indicated by green arrows). At each sorting step (e.g., I.
H2← (H1)), we apply a sorting technique similar to the approach
by Holten and van Wijk [24] to reorder the leaves of the depending
hierarchy (H2) based on the reference hierarchy (H1). The sorting
is based on the Sugiyama-style crossing reduction technique [51],
where the nodes of dependent hierarchy are reordered with respect
to matching nodes in the reference hierarchy.

The crossing reduction is performed per hierarchy level using
the barycenter method. The algorithm, thereby, starts with the
root element and recursively sorts the subsets until the leaves
are reached. Due to our comparison not only along but also
across sequences, a hierarchy can have more than one dependency
(e.g., IV. H5 ← (H2, H4)). Therefore, we extend the standard
barycenter method that takes only the index positions of one
hierarchy into account such that different reference hierarchies
Href := {Hi1 , . . . ,HiK} with K = |Href| are considered. This is
done by taking the average of the respective index positions from
all reference hierarchies, where the indexing is independent in
each hierarchy, starting with 1.

The sweep is performed in both directions several times—each
time starting with the result from the last run. After each run, the
number of crossing transitions is computed. The sorting algorithm
stops after a maximum number of 100 runs. As a resulting vertex
ordering, we take the one with the least number of crossing
transitions. Figure 8 shows the friendship network from Figure 2
together with a dynamic and a global (static) hierarchical group

structure. The initial number of 1,778 crossing transitions could
be reduced to 257 by applying our sorting algorithm.

4.6 Interaction Techniques

Our visualization technique facilitates the analysis of changes
and differences in the hierarchical group structure as well as the
consistency between the graph topology and hierarchical group
structure. Both can be performed on the higher level (zooming out)
and on the lower level (zooming in and panning). The hierarchy
dissimilarities, the hierarchical structures, as well as the edge
densities within and between groups can be perceived even when
the visualization is scaled down such that the matrix cells are only
few pixels wide. To gain further insight and to analyze changes
in more detail, other interaction than just zooming and panning is
necessary, at least for large data sets.

Vertex labels can be displayed if desired but are also available
as tooltip when hovering over a vertex vi, i.e., a leaf node in
the icicle or transition between hierarchies. For the latter, the
tooltip also contains the dissimilarity mapped to the color of the
transition. The tooltips on edges can be used to determine the
source and the target vertex as well as the exact weight of that
edge.

Our visualization approach facilitates brushing and linking:
by selecting a single vertex or a group of vertices, their course is
highlighted through all sequences using yellow ribbons (Figure 2).
Using this highlighting, we can easily identify points in time when
vertices or groups emerge or disappear and how they change with
respect to their integration into hierarchical group structures. A
video demonstrating the interaction techniques is available in the
supplemental material.

5 SCALABILITY AND LIMITATIONS

A general challenge in information visualization is visual scala-
bility: even with an increasing number of elements, the generated
visualization should remain readable.

Graph size: In static graphs, the number of nodes and the den-
sity of edges are two crucial parameters for scalability. As shown
by several scalability comparisons, matrix-based representations
are better suited than node-link diagrams for most tasks on large
and dense graphs but path-related tasks [52], [53]. The hierarchical
group structure of the graph improves the scalability with respect
to the size of the graph as it can be used to abstract the set of nodes.
In the traditional adjacency matrix representation, the hierarchy is
used to sort the vertices and shown by a tree visualization such as
a layered icicle plot attached to the matrix. However, perceiving
the hierarchical group structure using this matrix representation
becomes difficult with increasing number of nodes because fewer
pixels are available for each vertex and edge (Figure 9(a)).

In contrast, our matrix–hierarchy visualization additionally
encodes the hierarchical group structure visually within the matrix
using indentation and contours (Figure 9(b)). When decreasing
the size of the matrix while zooming out, the thickness of the
contours and the indentation within the matrix stays constant,
hence, increases relative to the size of the matrix. In this way,
the hierarchical group structure can also be perceived at a coarse
level. Moreover, our visual mapping of the edge density within and
between subgroups also improves the scalability. When scaling the
visualization such that matrix cells are only a few pixels wide or
less, edges become barely readable. However, the density within

JOURNAL OF IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ??, NO. ??, MONTH 2015 9

(a) Traditional adjacency matrix with icicle plots attached

(b) Our matrix–hierarchy visualization

Fig. 9. Comparing a traditional adjacency matrix (a) with our matrix
visualization technique (b) that integrates the hierarchical group struc-
ture in the matrix. The matrices are shown at different zoom levels to
demonstrate how the approaches scale. All matrices show the same
hierarchically structured graph.

and between groups can still be perceived, giving the impression
of a partially aggregated graph.

Time: Besides the scalability with respect to the size and
density of the graph, the number of points in time needs to
be considered as a further dimension [54]. A limitation of our
technique is that the diagrams become very elongated with in-
creasing number of points in time T . Figure 10(a) shows a graph
with T = 21 points in time and at most 146 vertices per graph
Gt . Scaling down this diagram such that the complete data set
is visible on the screen, individual relations of the graphs and
transitions between the hierarchical group structures cannot be
perceived. However, using the bars that visualize the dissimilarity
of two successive hierarchical group structures Hm,t and Hm,t+1
and the number of added or removed edges from Gt and Gt+1,
we can identify time transitions t → t + 1 with severe changes in
hierarchical group structure and graph topology.

The dissimilarity can be used to analyze differences in the
hierarchical group structure on the higher level and to identify
successive points in time with strong differences. The user can
then drill down and investigate the differences between two graphs
of interest and their hierarchical group structures in more detail.
To this end, the dissimilarities dissim(v, Hm,t , Hm,t+1) can be used
to aggregate intervals (t1, . . . , tk) (with t1 < tk) within the dynamic
graph G . If only one sequence of hierarchical group structures
H1 is defined, we can use a threshold θdissim and aggregate all
graphs Gt of an interval (t1, . . . , tk), with dissim(v, Ht , Ht+1) <
θdissim for all t ∈ (t1, . . . , tk). For multiple sequences (i.e., M > 1),
we can use the minimum or maximum norm or the average of the
M dissimilarity values as overall hierarchy dissimilarity between
two successive points in time t and t + 1. This overall hierarchy

dissimilarity can then be used to partially aggregate the dynamic
graph based on the defined threshold θdissim.

Figure 10(b) shows the result of aggregating intervals within
the dynamic graph from Figure 10(a) that are stable with respect
to the hierarchical structure. The aggregation was done using the
minimum norm and a threshold θdissim = 0.08. When aggregating
subsequences from a dynamic graph, different representations can
be used for the aggregate, as in MultiPiles [14], e.g., showing
the mean, trend, variation, or adjacency differences of the graph
subset. We decided to use the mean of the subset (Gt1 , . . . ,Gtk).

When aggregating dynamic hierarchically structured graphs,
we also need to consider how to aggregate the hierarchies
(Hm,t1 , . . . ,Hm,tk). The hierarchies can either be merged manually
or the aggregated graph needs to be clustered again. As the
aggregation of hierarchies and hierarchical clustering of graphs
was done by external tools, the whole aggregation procedure was
not yet done interactively within our prototype but was outsourced
as a preprocessing step. For the data set visualized in Figure 10(b),
two different hierarchy aggregation methods were applied: for
the hierarchical clustering sequence, the aggregated graph was
clustered again; for the package structure sequence, the package
structures were merged manually.

Both aspects—graph size and time—have an influence on the
scalability and interact. The larger the graphs, the fewer graphs fit
on the screen without zooming out. Besides the temporal scala-
bility, our technique has some other limitations. The combination
of the components we integrated into our hybrid (Sections 4.3
and 4.4) require a learning process for the user. Furthermore, if
more than two sequences are compared, the result of the sorting
algorithm depends on the sequence order and the ordering per
sequence will not be optimal. In addition, non-adjacent matrices
cannot be compared. Curved transitions might be misinterpreted as
changes in the hierarchies, but could be only an artifact of sorting.
Similarly, straight transitions may appear even if the hierarchical
integration of that vertex changes. However, the color mapping of
the dissimilarity provides means to better distinguish false from
true changes in the hierarchies.

6 CASE STUDIES

We applied our visualization technique to two different application
scenarios to show its utility. Within a case study on software
releases, we explore the evolution of dependency graphs and
the consistency between the topology-based hierarchical group
structure and the package structure of the software system. In
a case study on international soccer matches, we use different
hierarchical group structures to analyze local patterns that are
visible in either one—but not all—of the hierarchical group
structures.

6.1 Visualization of Software Evolution
The first data set shows the evolution of a software system as
a dynamic graph. The structural dependencies (i.e., method calls
and usage of variables, inheritance, aggregation, etc.) were ex-
tracted using DependencyFinder (http://depfind.sourceforge.net).
The vertices of the graph model classes and edge weights represent
the number of dependencies between two classes. The package
structure of each revision provides a natural dynamic hierarchy on
the classes. To analyze the suitability of the package structures,
we compare them to a dynamic hierarchical group structure
derived using the hierarchical clustering algorithm by Rosvall and

JOURNAL OF IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ??, NO. ??, MONTH 2015 10

(a) JUnit framework including all 21 releases of the data set with at most 146 vertices per point in time

(b) Call graphs after aggregating subsets of graphs whose dissimilarity in the hierarchical clustering and package structure is less than 0.08

(c) Zoom into (b) showing a subset of three partially aggregated revisions from (b)

Fig. 10. Structural dependencies of the JUnit framework. The results of a hierarchical clustering of the classes is compared to the package structure
of the framework.

Bergstrom [55]. We look at changes in the hierarchical group
structure and in the graph topology, i.e., how the classes within
and between groups depend on each other in different releases.
Software developers might use our visualization approach to
understand their software system and its history. They may use
it to analyze when particular packages and dependencies were
introduced, or to identify design flaws like unwanted dependencies
between packages.

In this case study, the JUnit regression testing framework
(http://junit.org)—including 21 releases—is used as an example
(Figure 10(a)). The aim of this case study was to (1) identify
phases of changes in the hierarchical group structure and graph
topology and (2) analyze the consistency between the package
structure and the graph topology of individual revisions. Scrolling
through time and investigating the dissimilarity bars as well as the
amount of added and removed edges visualized by further bars
made clear that the changes in the graph topology and hierarchical
group structure are only minor between many releases. Based
on the aggregation procedure described in the previous section,
we extracted a dynamic graph over six partially aggregated re-
leases applying a threshold of θdissim = 0.08 (Figure 10(b)). In

Figure 10(a), temporal transitions with a hierarchy dissimilarity
of θdissim ≥ 0.08 are highlighted by black boxes. The strongest
change occurs between revision 3.8.2 and 4.0.0.

The visualization shows that the JUnit framework constantly
grows, where the most substantial changes are introduced with
revision 4.0.0 as the package org is introduced (Figures 10(c) A)
next to the main package junit, which was the only main package
in revisions 3.*. The package junit is loosely coupled with
classes in different subpackages of org.junit. In contrast, in the
Hierarchical Clustering sequence, the package junit is integrated
into a bigger hierarchical cluster together with several classes
from org.junit (Figure 10(b) B). This is just one difference that
contributes to the high dissimilarity between the two hierarchical
group structures for the graph 4.0.0-4.3.1. Across the revisions,
more and more packages and classes are introduced and rela-
tively few removed, e.g., the packages junit.ui, junit.awtui, and
junit.swingui (Figure 10(c) C).

Across all revisions, some subpackages are coupled as
dependencies between them exist. Classes of the package
junit.framework, for instance, are strongly coupled with classes
of other junit packages (Figure 10(c) D). Moreover, there are

JOURNAL OF IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ??, NO. ??, MONTH 2015 11

Fig. 11. Comparing the results of a hierarchical clustering on the classes
to the package structure of the aggregated JUnit revisions 4.5.0-4.8.1.

many method dependencies from classes of org.junit.internal to
classes of org.junit.runner (starting with revision 4.0.0; e.g., Fig-
ure 10(c) E).

In the first sequence (Hierarchical Clustering), classes are
clustered hierarchically based on their dependencies. A high dis-
similarity between the hierarchical group structures—Hierarchical
Clustering and Package Structure—may point out design flaws
and can be used to detect unwanted dependencies between pack-
ages. Looking at the dissimilarity of the hierarchical integration
of vertices (blue curves), we can identify classes that should be
moved into a different package, e.g., the class SuiteMethod of

the package org.junit.internal.runners (Figure 11 A). However,
some packages are presented relatively well within the Hier-
archical Clustering sequence, e.g., org.hamcrest and junit in
revision 4.5.0 (Figure 11 B). An artifact that we detected using the
Package Structure sequence is the occurrence of several packages
whose classes are only related to classes of other packages but
not among each other; they show up as white squares along the
diagonal, e.g., subpackages of org including org.junit.runners,
org.junit.internal.requests, org.hamcrest.core, and others
(Figure 11 C). Classes within junit.extensions, e.g., only de-
pend on classes within junit.framework during all revisions (Fig-
ure 10(c) F). Within the Hierarchical Clustering sequence, the
classes of these two packages are clustered to one subhierarchy.
Hence, it may be reasonable to combine both.

Using our visualization, we can analyze the consistency be-
tween the package structure of a software system and the hierar-
chical clustering based on the graph topology over time. Based on
the visual mapping of hierarchy dissimilarities, we can identify
points in time of substantial changes as well as versions with
strong differences between the two hierarchical group structures.
The consistency between package structure and graph topology
can be analyzed using our mapping of the density of dependencies
within and between sub-packages. Hence, we can identify design
flaws and identify aspects to improve the software system.

6.2 International Soccer Matches

In the second case study, we apply our visualization technique to
a dynamic graph to compare the global (static) hierarchical group
structure of a graph with its local (time-dependent) hierarchical
group structures. The dynamic graph summarizes world-wide
international soccer matches of 219 national teams between 1992
and 2005. In each of the graphs Gt , two teams are related if they
played against each other in year t. Hence, the graphs Gt are
undirected and the matrices are symmetric.

We use our visualization approach to visualize three different
hierarchical group structures H : (1) The local group structure
Ht (Hierarchical Clustering) derived for each year individu-
ally using the hierarchical clustering algorithm by Rosvall and
Bergstrom [55]. (2) The local but stabilized group structure Ht
modeling an inertia of the hierarchical groups by incorporating
the hierarchical group structure of the previous graph Ht−1 (Hi-
erarchical Clustering Stabilized). This is done by clustering the
graphs G′t , instead of Gt , where each G′t incorporates for all pairs
of vertices e j = (vi1 , vi2) the length of the shortest path pi1,i2 in
hierarchy Ht−1 into the edge weight w′e j

. The lengths are combined
with the edge weight we j of Gt to form the edges of G′t with weight
w′e j

= we j +α pi1,i2
−β , where α is used to adjust the scale and

β > 0 is used to adjust the rate of decrease of the second term. For
our data set, we decided to use α = 0.5 and β = 3.0. (3) The global
hierarchical group structure based on the geographic topology
(Geographic Hierarchy). This hierarchical group structure is time-
independent (static).

In contrast to the previous case study, the dissimilarities be-
tween successive hierarchies are relatively constant, ranging from
0.10 to 0.14. As the hierarchies are changing substantially during
each time transition, we did not find a good threshold to partially
aggregate subsequences. For space constraints, in the following,
we concentrate on a subset of the dynamic graph including the
years 2001–2005. In Figure 12(a), the first sequence (Hierarchical
Clustering) can be used to identify and analyze temporal local

JOURNAL OF IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ??, NO. ??, MONTH 2015 12

(a) International soccer matches from 2001 to 2005

(b) Several bundles of teams from Asia and America are merged into the World Cup cluster in 2002

Fig. 12. International soccer matches over 14 years comprising 219 national teams. (a) The dynamic graph is shown using three different hierarchical
group structures: Hierarchical Clustering, Hierarchical Clustering Stabilized, and Geographic Hierarchy. Added edges are highlighted in green, which
make up a huge amount in all years, which also becomes apparent by the bars at the top of the diagram. Hence, the difference in the graph topology
is relatively high. (b) Comparison transition between the Hierarchical Clustering Stabilized and Geographic Hierarchy sequence at t = 2002.

group structures. In 2001, e.g., there are several small clusters
along the diagonal (Figure 12(a) A) representing the qualification
groups of the World Cup that happened in the following year (B).
A similar pattern can be perceived 2003–2004, with the European
Championship in 2004 occurring as relatively large cluster (C and
D). By selecting a cluster, such as the World Cup cluster, we can
easily track their members to the Geographic Hierarchy sequence
and determine their composition from the different continents.

The Hierarchical Clustering Stabilized sequence is more suit-
able for the analysis of stable hierarchical group structures. The
cluster containing Australia and several teams of Oceania, e.g.,
remains visible during all years (E) but becomes smaller from
2004 to 2005 as several teams are not part of G2005 any more.
Moreover, the Hierarchical Clustering Stabilized sequence helps

us identify the strongest changes in the hierarchical group structure
as little changes are suppressed by the inertia. In the time transition
from 2001 to 2002, several teams from Asia and America stick
out as blue curves as they have a relatively high dissimilarity.
These teams are merged into the World Cup cluster that mainly
consists of European teams (F). The composition of teams dur-
ing the World Cup in 2002 can also be analyzed investigating
the comparison transition between the Hierarchical Clustering
Stabilized and the Geographic Hierarchy sequence. Looking at
the hierarchy comparison transitions, we can see several bundles
of blue curves from Asia and America merged into the World
Cup cluster (Figure 12(b)). One of these bundles from Asia, in
particular from the Middle East, appears every year (G).

JOURNAL OF IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ??, NO. ??, MONTH 2015 13

Finally, using the Geographic Hierarchy, we can analyze the
coupling between the continents as well as the cohesion within
regional subgroups. European teams (H) play many matches
against each other in every year. The visualization of the density
ρl1,l2 (Section 4.3) shows that Europe is coupled strongly with
Asia over all years, in particular with teams from the Middle East
(e.g., I in 2004). Using this global hierarchy, it also appears that
the teams from South America (J) build a very cohesive group
over all years but the year of the World Cup (2002).

Our visualization technique can be used to analyze groups of
national teams that played many matches against each other in
particular years and how these groups changed over time using
the Hierarchical Clustering and the Hierarchical Clustering Sta-
bilized sequence. The visualization of the Geographic Hierarchy
sequence, in contrast, helps analyze the number of matches of
teams within and between continents and their subareas.

7 CONCLUSION AND FUTURE WORK

We developed a visualization technique that shows dynamic hier-
archical group structures together with their underlying dynamic
graph topology. Our technique represents the first approach to vi-
sualize both dynamic components in a reasonable, scalable way. In
contrast to other visualizations for dynamic graphs, our technique
supports all three tasks that arise for hierarchical group structures
in dynamic graphs: First, the consistency between the hierarchical
group structure and the graph topology of individual graphs can be
analyzed. Second, the changes of graph topologies can be tracked
on a higher level using the bars and in detail using the encoding
of added and removed edges. Not least, due to the transitions
connecting hierarchies and the dissimilarity metric encoded in the
diagram, it is possible to track the hierarchy changes over time,
which is not possible with most other timeline approaches.

To improve the temporal scalability, we plan to integrate the
aggregation of intervals as described in Section 5. This will allow
users to interactively collapse and expand intervals using drag
and drop interactions as described by Bach et al. [14]. Also
their piling approach could be integrated into our visualization
technique for up to two sequences by attaching the piles above the
first and below the second sequence. In addition, the aggregation
of subgroups within the graphs would increase the scalability with
respect to the graph size. Since the hierarchical structures can
change, the one-to-one relation of successive subgroups would
not be necessarily given. The transitions as visualized by our
technique would therefore need to be extended toward Sankey-
like representations that allow splits and merges.

Moreover, our visual comparison technique can be used to
compare hierarchical group structures of the same dynamic graph,
e.g., different hierarchical clusterings or a time-dependent vs.
a global hierarchical structure. Dissimilarities between any two
hierarchical group structures become apparent by the dissimilarity
bars and blue curves connecting the two hierarchies. Moreover, our
visualization technique benefits from ordering internal nodes and
leaves of the hierarchies. The ordering minimizes the number of
crossing transition curves within each sequence but also between
the sequences. Our sorting and coloring based on dissimilarities
helps deal with the remaining crossings and to indentify outliers,
i.e., vertices that switch into a different subhierarchy. We plan to
extend the sorting algorithm to optimize the order of sequences,
such that similar sequences of hierarchies are positioned next to
each other. In addition, the possibility to interactively adjust the
order would help users compare sequences.

ACKNOWLEDGMENTS

This work was supported by DFG within SFB 716/D.5 and within
project DFG WE 2836/6-1 “Visual analytics of static and dynamic
networks taking into account uncertainty and fuzzy clustering”.

REFERENCES

[1] I. Herman, G. Melancon, and M. Marshall, “Graph visualization and
navigation in information visualization: A survey,” IEEE Transactions
on Visualization and Computer Graphics, vol. 6, no. 1, pp. 24–43, 2000.

[2] C. Vehlow, F. Beck, and D. Weiskopf, “The state of the art in visualizing
group structures in graphs,” in Eurographics Conference on Visualization
- STARs, ser. EuroVis. Eurographics Association, 2015, pp. 21–40.

[3] F. Beck, M. Burch, S. Diehl, and D. Weiskopf, “A taxonomy and survey
of dynamic graph visualization,” Computer Graphics Forum, 2016, to
appear.

[4] J.-w. Ahn, C. Plaisant, and B. Shneiderman, “A task taxonomy for
network evolution analysis,” IEEE Transactions on Visualization and
Computer Graphics, vol. 20, no. 3, pp. 365–376, 2014.

[5] N. Kerracher, J. Kennedy, and K. Chalmers, “A task taxonomy for
temporal graph visualisation,” IEEE Transactions on Visualization and
Computer Graphics, vol. 21, no. 10, pp. 1160–1172, 2015.

[6] S. Bremm, T. von Landesberger, M. Hess, T. Schreck, P. Weil, and
K. Hamacherk, “Interactive visual comparison of multiple trees,” in
Proceedings of the 2011 IEEE Conference on Visual Analytics Science
and Technology. IEEE, 2011, pp. 31–40.

[7] A. Telea and D. Auber, “Code Flows: Visualizing structural evolution of
source code,” Computer Graphics Forum, vol. 27, no. 3, pp. 831–838,
2008.

[8] G. Van de Bunt, M. van Duijn, and T. Snijders, “Friendship networks
through time: An actor-oriented statistical network model,” Computa-
tional and Mathematical Organization Theory, vol. 5, pp. 167–192, 1999.

[9] A. Ahmed, X. Fu, S.-H. Hong, Q. Nguyen, and K. Xu, “Visual analysis
of history of World Cup: A dynamic network with dynamic hierarchy and
geographic clustering,” in Visual Information Communication. Springer,
2010, pp. 25–39.

[10] F. Reitz, M. Pohl, and S. Diehl, “Focused animation of dynamic com-
pound graphs,” in Proceedings of the 13th International Conference on
Information Visualisation. IEEE, 2009, pp. 679–684.

[11] M. Burch, B. Schmidt, and D. Weiskopf, “A matrix-based visualization
for exploring dynamic compound digraphs,” in Proceedings of the 17th
International Conference Information Visualisation. IEEE, 2013, pp.
66–73.

[12] J. S. Yi, N. Elmqvist, and S. Lee, “TimeMatrix: Analyzing temporal
social networks using interactive matrix-based visualizations,” Interna-
tional Journal of Human-Computer Interaction, vol. 26, no. 11-12, pp.
1031–1051, 2010.

[13] B. Bach, E. Pietriga, and J.-D. Fekete, “Visualizing dynamic networks
with matrix cubes,” in Proceedings of the SICCHI Conference on Human
Factors in Computing Systems. ACM, 2014, pp. 877–886.

[14] B. Bach, N. Henry-Riche, T. Dwyer, T. Madhyastha, J.-D. Fekete, and
T. Grabowski, “Small MultiPiles: Piling time to explore temporal patterns
in dynamic networks,” Computer Graphics Forum, vol. 34, no. 3, pp. 31–
40, 2015.

[15] M. Burch and S. Diehl, “TimeRadarTrees: Visualizing dynamic com-
pound digraphs,” Computer Graphics Forum, vol. 27, no. 3, pp. 823–830,
2008.

[16] M. Burch, M. Höferlin, and D. Weiskopf, “Layered TimeRadarTrees,”
in Proceedings of the 15th International Conference on Information
Visualisation. IEEE, 2011, pp. 18–25.

[17] C. Vehlow, M. Burch, H. Schmauder, and D. Weiskopf, “Radial layered
matrix visualization of dynamic graphs,” in Proceedings of the 17th
International Conference Information Visualisation. IEEE, 2013, pp.
51–58.

[18] A. Perer and J. Sun, “MatrixFlow: Temporal network visual analytics to
track symptom evolution during disease progression,” in AMIA Annual
Symposium Proceedings, vol. 2012. American Medical Informatics
Association, 2012, pp. 716–725.

[19] C. Vehlow, F. Beck, P. Auwärter, and D. Weiskopf, “Visualizing the evo-
lution of communities in dynamic graphs,” Computer Graphics Forum,
vol. 34, no. 1, pp. 277–288, 2015.

[20] S. Jürgensmann and H.-J. Schulz, “A visual survey of tree visualization,”
IEEE VisWeek 2010 Posters, 2010.

[21] H.-J. Schulz, “Treevis.net: A tree visualization reference,” IEEE Com-
puter Graphics and Applications, vol. 31, no. 6, pp. 11–15, 2011.

JOURNAL OF IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ??, NO. ??, MONTH 2015 14

[22] M. Graham and J. Kennedy, “A survey of multiple tree visualisation,”
Information Visualization, vol. 9, no. 4, pp. 235–252, 2010.

[23] R. Lutz, D. Rausch, F. Beck, and S. Diehl, “Get your directories right:
From hierarchy visualization to hierarchy manipulation,” in Proceedings
of the 2014 IEEE Symposium on Visual Languages and Human-Centric
Computing. IEEE, 2014, pp. 25–32.

[24] D. Holten and J. J. van Wijk, “Visual comparison of hierarchically
organized data,” Computer Graphics Forum, vol. 27, no. 3, pp. 759–766,
2008.

[25] T. Munzner, F. Guimbretière, S. Tasiran, L. Zhang, and Y. Zhou,
“TreeJuxtaposer: Scalable tree comparison using focus+context with
guaranteed visibility,” ACM Transactions on Graphics, vol. 22, no. 3,
pp. 453–462, 2003.

[26] F. Beck and S. Diehl, “Visual comparison of software architectures,”
Information Visualization, vol. 12, no. 2, pp. 178–199, 2013.

[27] M. Graham and J. Kennedy, “Exploring multiple trees through DAG
representations,” IEEE Transactions on Visualization and Computer
Graphics, vol. 13, no. 6, pp. 1294–1301, 2007.

[28] J. Guerra-Gómez, M. Pack, C. Plaisant, and B. Shneiderman, “Visual-
izing change over time using dynamic hierarchies: TreeVersity2 and the
StemView,” IEEE Transactions on Visualization and Computer Graphics,
vol. 19, no. 12, pp. 2566–2575, 2013.

[29] J. A. Guerra Gómez, A. Buck-Coleman, C. Plaisant, and B. Shneiderman,
“TreeVersity: Comparing tree structures by topology and node’s attributes
differences,” in Proceedings of IEEE Conference on Visual Analytics
Science and Technology. IEEE, 2011, pp. 275–276.

[30] M. Burch and S. Diehl, “Trees in a Treemap: visualizing multiple
hierarchies,” in Visualization and Data Analysis, vol. 6060. International
Society for Optics and Photonics, 2006, pp. 60 600P–60 600P–12.

[31] T. Dwyer and F. Schreiber, “Optimal leaf ordering for two and a
half dimensional phylogenetic tree visualisation,” in Proceedings of the
2004 Australasian Symposium on Information Visualisation. Australian
Computer Society, Inc., 2004, pp. 109–115.

[32] C. A. Stewart, D. Hart, D. K. Berry, G. J. Olsen, E. A. Wernert, and
W. Fischer, “Parallel implementation and performance of fastDNAml: A
program for maximum likelihood phylogenetic inference,” in Proceed-
ings of the 2001 ACM/IEEE Conference on Supercomputing. ACM,
2001, pp. 20–20.

[33] F. Chevenet, C. Brun, A. L. Banuls, B. Jacq, and R. Christen, “TreeDyn:
towards dynamic graphics and annotations for analyses of trees,” BMC
Bioinformatics, vol. 7, no. 1, pp. 439–448, 2006.

[34] S. Gratzl, N. Gehlenborg, A. Lex, H. Pfister, and M. Streit, “Domino:
Extracting, comparing, and manipulating subsets across multiple tabular
datasets,” IEEE Transactions on Visualization and Computer Graphics,
vol. 20, no. 12, pp. 2023–2032, 2014.

[35] S. Havre, B. Hetzler, and L. Nowell, “ThemeRiver: visualizing theme
changes over time,” in Proceedings of the IEEE Symposium on Informa-
tion Visualization, 2000, pp. 115–123.

[36] P. Riehmann, M. Hanfler, and B. Froehlich, “Interactive Sankey dia-
grams,” in Proceeding of the IEEE Symposium on Information Visual-
ization. IEEE, 2005, pp. 233–240.

[37] C. Viau and M. J. McGuffin, “ConnectedCharts: Explicit visualization of
relationships between data graphics,” Computer Graphics Forum, vol. 31,
no. 3, pp. 1285–1294, 2012.

[38] J. Zhao, Z. Liu, M. Dontcheva, A. Hertzmann, and A. Wilson, “Ma-
trixWave: Visual comparison of event sequence data,” in Proceedings
of the 33rd Annual ACM Conference on Human Factors in Computing
Systems. ACM, 2015, pp. 259–268.

[39] B. Tversky, J. Bauer Morrison, and M. Bétrancourt, “Animation: can it
facilitate?” International Journal of Human-Computer Studies, vol. 57,
no. 4, pp. 247–262, 2002.

[40] M. Burch, C. Vehlow, F. Beck, S. Diehl, and D. Weiskopf, “Parallel edge
splatting for scalable dynamic graph visualization,” IEEE Transactions
on Visualization and Computer Graphics, vol. 17, no. 12, pp. 2344–2353,
2011.

[41] M. Greilich, M. Burch, and S. Diehl, “Visualizing the evolution of
compound digraphs with TimeArcTrees,” Computer Graphics Forum,
vol. 28, no. 3, pp. 975–982, 2009.

[42] M. Hlawatsch, M. Burch, and D. Weiskopf, “Visual adjacency lists for
dynamic graphs,” IEEE Transactions on Visualization and Computer
Graphics, vol. 20, no. 11, pp. 1590–1603, 2014.

[43] C. Mueller, B. Martin, and A. Lumsdaine, “A comparison of vertex
ordering algorithms for large graph visualization,” in Proceedings of the
6th International Asia-Pacific Symposium on Visualization. IEEE, 2007,
pp. 141–148.

[44] S. Rufiange, M. J. McGuffin, and C. P. Fuhrman, “TreeMatrix: A hybrid
visualization of compound graphs,” Computer Graphics Forum, vol. 31,
no. 1, pp. 89–101, 2012.

[45] J. B. Kruskal and J. M. Landwehr, “Icicle Plots: Better displays for
hierarchical clustering,” The American Statistician, vol. 37, no. 2, pp.
162–168, 1983.

[46] M. Shtern and V. Tzerpos, “Lossless comparison of nested software
decompositions,” in Proceedings of the 14th Working Conference on
Reverse Engineering. IEEE, 2007, pp. 249–258.

[47] M. Shtern and V. Tzerpos, “A framework for the comparison of nested
software decompositions,” in Proceedings of the 11th Working Confer-
ence on Reverse Engineering. IEEE, 2004, pp. 284–292.

[48] F. Beck, F.-J. Wiszniewsky, M. Burch, S. Diehl, and D. Weiskopf,
“Asymmetric visual hierarchy comparison with nested icicle plots,”
in Joint Proceedings of the Fourth International Workshop on Euler
Diagrams and the First In-ternational Workshop on Graph Visualization
in Practice, 2014, pp. 53–62.

[49] B. Alper, B. Bach, N. Henry Riche, T. Isenberg, and J.-D. Fekete,
“Weighted graph comparison techniques for brain connectivity analy-
sis,” in Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. ACM, 2013, pp. 483–492.

[50] C. Minards, “Carte figurative des pertes succesives en hommes de
l’Armée Francaise dans champagne de Russie,” 1869.

[51] K. Sugiyama, S. Tagawa, and M. Toda, “Methods for visual understand-
ing of hierarchical system structures,” IEEE Transactions on Systems,
Man and Cybernetics, vol. 11, no. 2, pp. 109–125, 1981.

[52] M. Ghoniem, J.-D. Fekete, and P. Castagliola, “On the readability of
graphs using node-link and matrix-based representations: A controlled
experiment and statistical analysis,” Information Visualization, vol. 4,
no. 2, pp. 114–135, 2005.

[53] R. Keller, C. M. Eckert, and P. J. Clarkson, “Matrices or node-link dia-
grams: Which visual representation is better for visualising connectivity
models?” Information Visualization, vol. 5, no. 1, pp. 62–76, 2006.

[54] F. Beck, M. Burch, and S. Diehl, “Towards an aesthetic dimensions
framework for dynamic graph visualisations,” in Proceedings of the 13th
International Conference Information Visualisation. IEEE, 2009, pp.
592–597.

[55] M. Rosvall and C. T. Bergstrom, “Multilevel compression of random
walks on networks reveals hierarchical organization in large integrated
systems,” PLoS ONE, vol. 6, no. 4, p. e18209, 2011.

Corinna Vehlow is PhD student at VISUS, University of Stuttgart,
Germany. In 2010, she obtained the Diplom (M.Sc.) degree in compu-
tational visualistics from the Otto-von-Guericke University Magdeburg,
Germany. Her research interests include information visualization and
visual analytics with the focus on graph, set, and uncertainty visualiza-
tion, often in the context of biological networks.

Fabian Beck is a postdoctoral researcher at VISUS, University of
Stuttgart, Germany. In 2013, he obtained his Dr. rer. nat. (PhD) degree
in computer science from University of Trier. In his dissertation, he
investigated multi-dimensional coupling graph structures of software
systems. Most of his research is focused on methods for visualizing
and comparing large and dynamic graphs and hierarchies, often in the
context of software systems and their evolution.

Daniel Weiskopf is a professor at VISUS, University of Stuttgart, Ger-
many. He received his Dr. rer. nat. (PhD) degree in physics from the
University of Tübingen, Germany (2001), and the Habilitation degree in
computer science at the University of Stuttgart, Germany (2005). His
research interests include all areas of visualization, visual analytics,
GPU methods, perception-oriented computer graphics, and special and
general relativity.

