
Visual Analysis and Coding of Data-Rich User Behavior
Tanja Blascheck∗, Fabian Beck∗, Sebastian Baltes†, Thomas Ertl∗, and Daniel Weiskopf∗

∗University of Stuttgart, Germany †University of Trier, Germany

A

B

D C

Figure 1: Interactive coding of user behavior for transcribed user studies: (A) Selection Panel, which lists recorded users, codes, and code
categories, as well as options for searching and filtering; (B) Selected Activities Panel, which represents all selected user activities in a
visually enriched tabular representation including transcript, word-sized visualizations of eye movement and interaction data, and assigned
codes; (C) Sidebar, which provides additional information of a selected activity such as video, enlarged visualizations, statistics, and a legend;
(D) Comparison Panel, which allows contrasting codes of different categories and other categorical attributes of activities.

ABSTRACT

Investigating user behavior involves abstracting low-level events
to higher-level concepts. This requires an analyst to study indi-
vidual user activities, assign codes which categorize behavior, and
develop a consistent classification scheme. To better support this
reasoning process of an analyst, we suggest a novel visual analyt-
ics approach which integrates rich user data including transcripts,
videos, eye movement data, and interaction logs. Word-sized visu-
alizations embedded into a tabular representation provide a space-
efficient and detailed overview of user activities. An analyst assigns
codes, grouped into code categories, as part of an interactive pro-
cess. Filtering and searching helps to select specific activities and
focus an analysis. A comparison visualization summarizes results
of coding and reveals relationships between codes. Editing features
support efficient assignment, refinement, and aggregation of codes.
We demonstrate the practical applicability and usefulness of our
approach in a case study and describe expert feedback.

Index Terms: I.3.6 [Methodology and Techniques]: Interaction
techniques—; H.5.2 [User Interfaces]: Evaluation/Methodology—

∗e-mail: firstname.lastname@vis.uni-stuttgart.de
†e-mail: research@sbaltes.com

1 INTRODUCTION

Analyzing the results of a user study often requires substantial man-
ual work, in particular for qualitative data such as experiment tran-
scripts, video, or audio recordings. The challenge for an analyst is
to condense this rich but unstructured data into abstract concepts.
A central element of this process is assigning codes to activities
users have performed during a study. In general, coding is an es-
sential method of formal qualitative research methodologies such
as Grounded Theory [14, 19]. It can form the basis for a later quan-
titative analysis of coded user behavior as part of a mixed-method
approach [2, 51]. In context of visualization research, for instance,
North [42] brought forward the idea of identifying and coding visu-
alization insight as a qualitative approach studying user behavior.

Recording user behavior within an interactive system typically
includes a rich variety of data streams (e.g., video and audio record-
ings, transcripts of user behavior or of think-aloud protocols, eye
movement data, and interaction logs). There exist software tools
which support interactive coding. However, these tools only inte-
grate some of the data, usually, transcripts and video/audio. More-
over, their abilities to support an interactive exploration and analy-
sis of codes is limited.

In this work, we suggest a visual analytics approach for im-
proved coding of user behavior (Figure 1) which eases the tasks
processing and analyzing qualitative data. Our approach integrates
various data streams, such as transcripts of user activities and video
recordings or screencasts, into a tabular representation (Figure 1,

B). The table embeds eye movement and interaction data as word-
sized visualizations [3], which can be enlarged for detailed explo-
ration (Figure 1, C). We enable advanced interactive coding through
the following concepts of visually supported reasoning:

• Codes and coding categories: An analyst assigns codes to
every user activity, supported by auto-completion and collec-
tive code assignments. Codes grouped into categories build
a coding scheme and reflect different levels of an analysis or
results from several analysts (Figure 1, A and B).

• Visually-enriched faceted browsing: Our approach imple-
ments faceted browsing [58] to filter the table of user activities
by user, codes, textual search, eye movement and interaction
patterns (Figure 1, A and B). Word-sized visualizations high-
light selected activities in user timelines and show covered
codes and categories (Figure 1, A).

• Code comparison visualization: A dedicated view (Figure 1,
D) facilitates an interactive comparison of coding categories
and other categorical attributes of user activities. Vertical axes
represent grouping dimensions; each node on an axis identi-
fies a code or categorical value. Links between axes visualize
the overlap of nodes with respect to included user activities.

Our approach is novel and goes beyond existing solutions, in
particular regarding visually supported analysis, editing of codes
and data integration (Section 2). Based on defined system require-
ments and analysis tasks, we decided to blend a mixture of algo-
rithms, existing interaction concepts, and visualization techniques.
Additionally, we compare our approach to related systems to high-
light similarities and differences (Section 3). A detailed description
of our system shows how we implemented our requirements (Sec-
tion 4). In a case study, we use our approach to evaluate the results
of a user study highlighting insights an analyst might gain when us-
ing our system (Section 5). We first collected user feedback using
questionnaires, which yielded detailed informal feedback from ex-
perts (Section 6). Finally, we discuss contributions and limitations
(Section 7) and draw concluding remarks (Section 8).

Please note that, throughout this paper, we consistently distin-
guish users as participants of an analyzed user study from analysts
as people who use our approach.

2 RELATED WORK

Computer-assisted qualitative data analysis software (CAQDAS,
e.g., ATLAS.ti, MAXQDA) supports coding of qualitative data col-
lected in studies and experiments [38]. Wikipedia maintains a list
of available tools1 and Friese [18] compares six CAQDAS systems.
While CAQDAS approaches are usually general tools to code tex-
tual data (often enriched with video recordings), some approaches
are closer to our work as they specialize in analyzing user behav-
ior and partly integrate data-rich recordings. For instance, Dou et
al. [16] display interaction data in a timeline representation; anno-
tations can be added to interaction events. SensePath [41] supports
categorizing activities from web browsing and depicting them in
chronological order together with a video. ChronoViz [57] is a vi-
sualization tool, which allows coding using multiple data sources
(video, audio, interaction logs, sensor readings, paper notes, tran-
scriptions, and eye movement data). In contrast to our approach,
ChronoViz focuses on the video as the main data source and does
not offer a visualization technique for comparing annotations con-
structed during a coding process.

There are visualization approaches without coding support,
which represent coding behavior. If data is already coded before-
hand, for instance, a timeline may show coded activities, summariz-
ing quantities [49] or focusing on relations of events [50]. A transi-
tion matrix might represent sequences of event types [39]. Further-
more, a variety of visualization approaches is available specifically

1
https://en.wikipedia.org/w/index.php?title=Computer-assisted_qualitative_

data_analysis_software&oldid=702988839

for analyzing eye movement data [7]. For interaction data, a se-
quence of thumbnails could represent the state of a user interface
over time [21, 23]. Another approach is to visualize interactions
as a glyph on a time axis [16, 30]. A triangulation of different
data streams, however, may lead to more valid results [6, 30, 43].
Eye movements can be aligned with transcribed think-aloud data
and visualized over time [26]. A combined analysis of transcripts
and interaction logs might represent the data on a timeline [8] or
as a state diagram [44]. Also, combinations of interactions and eye
movement data on a timeline are possible [15, 25]. However, com-
bining all three data types allows a more holistic analysis to answer
questions about why a task is performed (transcript), how a task is
performed (interaction logs), and what a task pertains to (eye move-
ments) [9, 6]. Blascheck et al. [6] represent eye movement and
interaction data on a timeline with transcript data available on de-
mand. In contrary to these approaches, we focus on the transcript—
aligned with eye movement and interaction data—as the main data
stream because we consider the transcript most relevant for coding.

Our approach uses word-sized visualizations, which are also
known as sparklines [55], to embed additional information into a
user interface in a space-efficient way. This approach combines two
ideas from previous work: First, it applies word-sized eye move-
ment visualizations [3] for encoding eye movement and interac-
tion data. Second, word-sized visualizations show overlap of codes
as part of a faceted browsing concept, similar to the approach in
SurVis [4] for bibliographic data. In general, word-sized visualiza-
tions have been explored for different purposes, for instance, en-
riching natural-language text [20], or as part of visualizations [37].
However, they have not been used for supporting analysts in coding
user behavior or interactive editing scenarios.

For a comparison of coding categories, we introduce a visual
set comparison approach. There exist many techniques to visual-
ize set structures, as Alsallakh et al. [1] survey in a recent state-
of-the-art report on set visualization. They describe comparing set
families as an open problem. Among the surveyed techniques, Par-
allel Sets [34] comes closest to ours: they visualize different cat-
egorizations of elements on connected axes, but only allow non-
overlapping partitions of elements on each axis; variants of this
approach were also used in different contexts [46, 56]. Other vi-
sualization techniques look similar, but represent different data, for
instance, multivariate data [28], dynamic graphs [11], or changing
hierarchies [53]. Approaches, which support comparing different
word clouds are also related: Parallel Tag Clouds [13] use par-
allel axes and RadCloud [10] integrates several word clouds into
one radial diagram. Specifically for comparing assigned codes,
MAXQDA combines a code relations browser, which shows codes
on two axes of a matrix encoding their overlap in the cells [47].

3 CODING USER BEHAVIOR

For analyzing user behavior, we split the continuous stream of in-
formation into discrete, non-overlapping periods, which we call
user activities. Each activity summarizes a small set of actions and
has a precisely defined start time and duration. Hence, an activity
specifies a segment of the recorded video, audio, eye movement,
and interaction data. We assume that the process of identifying
activities of meaningful granularity has been done as a preprocess-
ing step. Further, every activity has a textual description attached,
which is part of the experiment transcript. We suggest transcribing
and identifying activities in one manual preprocessing step.

Categorizing and structuring user activities by assigning codes is
the focus of this paper. We follow a common definition of code:

“A code in qualitative inquiry is most often a word
or short phrase that symbolically assigns a summative,
salient, essence-capturing, and/or evocative attribute for
a portion of language-based or visual data.” [47]

Coding analysis and comparison

Recorded data
• Transcript
• Video/audio
• Gaze data
• Interactions

User behavior

Coding

Assigning codes
to activities

Coding scheme

Iterative
refinement

Iterative
refinement

Analyst

(A4)
Merge code
categories

(A3)
Monitor data

quality

(A2)
Higher-level

coding

(A1)
Find behavior

patterns

Activities

Codes Categories

Figure 2: Interactive coding of user behavior, which our approach
supports.

Hence, codes are simple textual descriptions of data and can be
considered as categorical attributes of user activities. In other con-
texts, codes are called keywords, tags, or terms. To discern different
types of codes, we introduce code categories: every code belongs
to exactly one of these categories. We decided against using ar-
bitrarily nested hierarchical categories to limit the complexity of
editing codes and categories. Also, a hierarchy is just one option to
further structure code categories: relationships between categories
and codes might be more complex and need to be organized in a
graph. We consider category organization and relationships out of
scope in this work.

Coding—the process of assigning codes—is an important part
of both qualitative and quantitative research methods. In general,
there exist various coding styles structured by Saldana [47] into
two cycles: after initial coding of entities in the first cycle, the sec-
ond cycle builds upon first-cycle coding to further structure and ab-
stract concepts. Our approach is generic and neither specialized
nor limited to a specific style or cycle. In qualitative research, the
popular Grounded Theory methodology [14, 19] heavily relies on
coding. According to Corbin and Strauss [14], the process starts
with open coding as an initial step, axial coding derives categories,
and finally selective coding helps build a theory of coded concepts.
Grounded Theory was already used to analyze user behavior, for in-
stance, evaluating visualization systems [29, 40], or software devel-
opment tools [36, 40]. Also, researchers applied parts of Grounded
Theory coding methodology or an ad-hoc coding method to ana-
lyze qualitative user data [32, 44]. Moreover, coding is relevant in
mixed-methods research—combining qualitative and quantitative
methods—where codes make qualitative information countable and
coding forms an intermediate step for a quantitative analysis [2, 51].
Evaluating visual systems according to the seven scenarios [35],
coding of user behavior is particularly important for understanding
environments and work practices, evaluating visual data analysis
and reasoning, and evaluating user experience.

In particular, our approach supports the coding process illus-
trated in Figure 2. The behavior of multiple users summarized in a
transcript, enriched with additional data, and split into activities is
the starting point of the process. An analyst assigns codes to activ-
ities and, as part of this process, applies an existing coding scheme
or develops a new one. However, beyond lower-level coding, we
also want to support the following higher-lever analysis tasks.

• (A1) Find behavior patterns: Summarizing activities as-
signed to specific codes, our approach facilitates exploring
common behavior patterns as part of a first coding cycle, for
instance, related to eye movements or interactions [6].

• (A2) Higher-level coding: Overlap of codes and similarity in
patterns helps to abstract codes to higher-level codes, creating
new categories as part of a second coding cycle [47].

• (A3) Monitor data quality: Analyzing user behavior in-
volves automatic and manual processing steps, and is prone to
mistakes and inconsistencies; an analysis of the recorded data
and current coding could help fix data quality issues early.

• (A4) Merge code categories: Code categories might describe
orthogonal dimensions or related concepts; in the latter case
when several coders have done coding independently, code
categories need to be consolidated and merged [47, 51]. This
requires a comparison between coding results.

This analysis and comparison of coded data leads to an iterative re-
finement of both individual code assignments and the overarching
coding scheme consisting of codes structured into categories. The
outcomes of the process are not only assigned codes and a devel-
oped coding scheme, but also insights into behavior patterns and
relationships between coded concepts.

The described coding process implemented in a visual interface
facilitates the reasoning process of an analyst [54] in different ways:
a visual interface integrates information sources in a single repre-
sentation, allows assigning codes interactively based on observed
data, and provides means to visually explore assigned codes. The
coding process can also be mapped to the visual analytics process
defined by Keim et al. [31]. While recorded user behavior split into
activities represents the data, the model consists of codes assigned
to user activities and a coding scheme, which an analyst devel-
ops during coding. The employed visualization techniques—word-
sized visualizations and the comparison diagram—represent model
and data. These representations help an analyst to gain knowledge
in the form of theories resulting from qualitative methods or quan-
titative statistics, which summarize the coded user behavior.

Based on the analysis tasks, we compare different systems pre-
sented in the related work section with our approach. These in-
clude: the CAQDAS systems MAXQDA and ATLAS.ti as well as
the research projects ChronoVis [57], SensePath [41], and the Op-
eration Analysis Tool [16] (see Table 1). As features, we chose the
support of different data sources, comparison of different variables,
search and filtering options, as well as visual analysis support. We
believe that these four categories are well-suited to describing the
differences between the approaches. Overall, the two CAQDAS
systems are most similar to our approach; however, they do not
cover the same data sources we do. The three research projects are
in comparison rather dissimilar to our approach. This is not surpris-
ing because the tools are specialized on other use cases. Chrono-
Vis [57], among these, is closest to our approach, but ChronoVis
supports a visual analysis of multi-modal data sources based focus-
ing on the video as the main data source.

4 VISUAL CODING APPROACH

For visually supporting coding of user behavior, we designed a
multiple-coordinated view [45] approach. Our approach consists
of four non-overlapping panels organized in a predefined layout
(Figure 1). We use brushing-and-linking [5] to connect the pan-
els in a way that data edits and selections in one panel propagate to
all panels. With this concept, we facilitate two general scenarios:
First, low-level coding relies on the central Selected Activities Panel
(Figure 1, B) integrating different data streams in a tabular repre-
sentation and the Sidebar supports it, showing video and details on
demand (Figure 1, C). Second, high-level coding and analysis facil-
itating the previously discussed analysis tasks (A1–A4) additionally
requires the Selection Panel (Figure 1, A) for faceted browsing and
the Comparison Panel (Figure 1, D) to analyze the coding scheme.

4.1 Data Input
Our approach assumes that eye movement data, interaction logs,
and a video were recorded during a user study. Additionally, as
the main data asset, the user behavior needs to be transcribed

Table 1: Feature matrix comparing different coding software sys-
tems and approaches. Legend: • = supported, ◦ = not supported.

Features M
A

X
Q

D
A

AT
LA

S
.ti

C
hr

on
oV

is
[5

7]

S
en

se
P

at
h

[4
1]

O
ps

.
A

nl
ys

.[
16

]

O
ur

ap
pr

oa
ch

Data sources

Transcript/text • • • ◦ ◦ •
Eye movement data ◦ ◦ • ◦ ◦ •
Interaction data ◦ ◦ • • • •
Audio recording • • ◦ ◦ ◦ ◦
Video recording • • • • • •

Comparison

Comparison of codes • • ◦ ◦ ◦ •
Comparison across users • • ◦ ◦ ◦ •
Comparison across researchers • • ◦ ◦ ◦ •
Comparison across systems ◦ ◦ ◦ ◦ ◦ •

Search/filter features

Text search • • ◦ ◦ ◦ •
Pattern search ◦ • ◦ ◦ ◦ •
Filter by category • • • ◦ ◦ •
Filter by code • • • ◦ ◦ •
Filter by user/document • • ◦ ◦ ◦ •

Visual analysis

Code relations/comparison • • ◦ ◦ ◦ •
Frequency analysis • • ◦ ◦ ◦ •
Code summary • • ◦ ◦ ◦ •
Visualization of user behavior • • • • • •

(e.g., based on a thinking-aloud protocol) and split into activities.
Recorded eye movements and interactions are treated as events
having a timestamp. Each event can be located on the screen.
The straightforward data structure makes our approach easily ex-
tendable to other data sources, as only a timestamp is required
to synchronize different data streams. Dividing a stimulus into
non-overlapping Areas of Interest (AOIs), we assign both types of
events to an AOI as a categorical attribute. Although the exam-
ples shown in this work use rectangular static AOIs, our approach
is open to non-rectangular or dynamically changing AOIs. To cre-
ate eye movement events, we aggregate subsequent fixations in the
same AOI into a single dwell accumulating individual fixation dura-
tions. For interactions, we allow assignment of an interaction type.
In the following, we use the eleven categories defined by Brehmer
and Munzner [9] as an example: encode, select, navigate, arrange,
change, filter, aggregate, annotate, import, derive, and record (cf.
Fig. 1, C, Legend). While transcribing and identifying activities are
manual processes, the other steps—recording, synchronizing, and
preprocessing—can be automated.

The dataset used in the paper originated from a study in which
the visual analytics system VarifocalReader [33] was evaluated.
VarifocalReader is a system for analyzing large documents on dif-
ferent levels (i.e., chapter, subchapter, page, paragraph, textpage).

4.2 User Activities
The Selected Activities Panel (Figure 1, B) is the main panel of our
approach where the coding process takes place. It contains a visu-
ally enriched table of currently selected user activities. The tabular
representation allows an integration of data with multiple data types
using embedded visualizations. Furthermore, a table can be easily
searched, filtered, or reordered. Each row represents an individ-
ual activity of a specific user. The table might list activities of the
same user or multiple users in several rows. An activity contains an
activity ID, a start timestamp, a duration, a textual transcription, a

Figure 3: Details of a selected activity including enlarged and
labeled word-sized visualizations and additional statistics in his-
tograms. The color coding, both in the word-sized visualizations
and in the histograms, refers to the interaction categories. The
gray-scale values in the word-sized visualizations represent the AOI
dwell times for the AOI-based visualization as well as the fixation
duration and interaction count for the point-based visualizations.

thumbnail image, word-sized visualizations for eye movements and
interaction data, and a column for each coding category. The cate-
gory columns allow an analyst to immediately add existing or new
codes to an activity using an auto-complete text box. The Selection
Panel (Figure 1, A) displays the current coding scheme below a list
of available users. To refine a coding scheme, categories and codes
can be created, edited, and removed using a context menu.

In the activity table, thumbnail images display the state of the
screen at the start time of an activity, helping an analyst to quickly
recall the state of an interface [23]. A subselection of an activity
shows details about this activity in the Sidebar (Figure 1, A). It
contains a video playback, an enlarged version of the word-sized
visualizations, and histograms. We chose to integrate a video play-
back option into our approach to recall actions and review video
segments for ambiguous activities [16]. The video plays at the start
time of a selected activity. It can be overlaid with additional infor-
mation. In our examples, we use a visualization of eye movements
and interactions, which show an animated scanpath and mouse click
events. In addition, details in the Sidebar (Figure 3) depict three
types of histograms, which show (i) the number of fixations per
AOI, (ii) AOIs of each interaction and the interaction count per AOI,
and (iii) interaction count per interaction category.

The word-sized visualizations depicted in the AOI-based vis and
point-based vis column are adapted from the concept of word-sized
eye tracking visualizations [3]. These visualizations integrated into
the activity table enable an analyst to code user activities without
switching between multiple views or windows. On subselection,
word-sized visualizations are shown enlarged in the Sidebar with
labels (Figure 3). The AOI-based word-sized visualizations show
eye movements and interaction events as
rectangles on a timeline from left to right; the vertical position of
each rectangle represents the AOI an event belongs to. The rows in
the visualization overlap to increase the area of the rectangles and
the discernibility of colors. The color coding of eye movements cor-
responds to the dwell time (Figure 1, C, Legend), which describes

the time a user has focused on a specific AOI. The color coding
of interactions corresponds to the interaction categories. We use a
qualitative color table created with ColorBrewer [22] having eleven
distinct colors. The point-based word-sized visualizations display
eye movements and interactions in a repre-
sentation similar to an attention map. In this case, the visualization
is divided into a grid of rectangles, where each rectangle covers a
part of the recorded screen area. For each rectangle, fixation dura-
tion or interaction count is accumulated and then color-coded in the
rectangle (Figure 1, C, Legend). An analyst might use the word-
sized visualizations during a coding process to visually search for
activities, which have similar eye movement or interaction patterns.
These visualizations can be considered as an aligned small multi-
ples representation of this data across the rows of the table. There
are other options to design word-sized visualizations for eye track-
ing and interaction data, which we have not implemented yet [3],
but would be easy to integrate.

4.3 Faceted Browsing

We use faceted browsing [58] to filter and search for user activities.
As listed in the Selection Panel (Figure 1, A), available facets—the
criteria for selecting activities—are users, categories, text search,
and pattern search. Every query yields a set of activities S shown in
the Selected Activities Panel (Figure 1, A); the heading indicates the
number of currently selected activities |S|. Multi-selection of facet
values is possible for users and codes of the same category using
Ctrl-click, which increases the number of results in S applying an
OR operation. For example, for two users with activities S1 and S2,
the selected activities are S = S1∪S2 when both users are selected.
It is also possible to select all users with a button. Selecting a code
category by clicking on it is equivalent to selecting all codes of a
category together. In contrast, if values from different facets are
selected (e.g., a user with activities S1 and a code with activities
S2) activities are restricted based on an AND operation (S = S1∩S2
only contains activities of a user that have a selected code). For
rapid coding, an option to collectively add or remove a code to or
from all currently selected activities is available in a context menu.

To show the degree of congruence of a current selection with
the recorded users and assigned codes, we add further word-sized
selection visualizations to the Selection Panel (Figure 1, A). For
each category and code, a small bar chart represents the fraction
of currently selected activities, which have assigned this code or any
code in the category respectively. For example, if 15 of 20 currently
selected activities contain a code, the rectangle next to the code is
filled to three quarters. A word-sized selection visualization is also
depicted next to a user . This visualization represents
the temporal order of selected activities with respect to all activities
of a user. Occurrences of selected activities are indicated by filled
rectangles on this timeline. In addition, a subselected activity is
highlighted in brighter blue. These visualizations are helpful, for
example, for seeing if a current selection refers to the beginning,
middle, or end of the user’s activities.

Searching for words in the transcripts or finding specific patterns
in the event data can help an analyst to speed up the coding process.
Specific words or patterns may indicate that specific codes should
be assigned. Entering a text string into the search box selects those
activities containing this string in the transcript and highlights it.
Our pattern search is based on a pattern editor to identify specific
sequences of eye movement and interaction events (Figure 4a) [6].
Each stack of rectangles represents an element of an event sequence
and each rectangle identifies an AOI. A filled gray rectangle selects
an eye movement event for a search while a color-coded circle is
used to search for interactions in a specific AOI with a chosen in-
teraction type. An analyst can create a search pattern by adding
individual pattern elements. Wild card elements can be included to
represent arbitrary events. In the exact search mode, an event has

(a) Pattern Search (b) Search Results

Figure 4: (a) An analyst can create search patterns in the pattern
editor. For example, a fuzzy search pattern finds activities which
contain an encode interaction (red circle) followed by an investiga-
tion of the Subchapter AOI (gray rectangle). (b) The search results
depict all occurrences of the created search pattern. They are shown
as word-sized visualizations next to the user labels.

Dimension A Dimension B

a1

a2

a3
a4

a5

A1

B1

B2

B2

A1 B1 2

4

4
1.00.5

0.75

0.75

Figure 5: Illustration of the comparison visualization (left) showing
three activity sets in two dimensions (numbers indicate the size of
activity sets and similarity values of edges) and traditional Venn
diagram representation of the sets (right).

to occur exactly as often as listed in the top row. In contrast, the
fuzzy mode interprets these numbers as maximum occurrences. In
the example in Figure 4a, a fuzzy search specifies a pattern where
users first performed an encode interaction in the subchapter AOI
and, up to ten events later, looked at this AOI. All activities con-
taining this pattern are selected and the pattern is highlighted in the
AOI-based word-sized visualization . In the
user sparklines the occurrences of a pattern are shown as well.

4.4 Comparison Visualization
We extend browsing and analyzing individual activities using a ded-
icated comparison view (Figure 1, D) to facilitate higher-level anal-
ysis of assigned codes. We want to analyze shared activities of
codes in a single category, compare different code categories, and
put code categories in context of other categorical attributes. These
additional attributes include users who performed an activity and
AOIs that users looked at or interacted with. While further prede-
fined attributes would be possible, the faceted browsing in combina-
tion with collective assignment of codes provides a flexible way to
introduce new dimensions to the comparison by creating new code
categories on demand. In general, comparing codes and categorical
attributes helps refine and abstract assigned codes and the coding
scheme (cf. Figure 2, A2–A4).

Visually comparing categorical attributes involves set compari-
son because attributes form sets of elements. In particular, a specific
code c unambiguously identifies a set of user activities Ac equiva-
lent to selecting a code. Since we allow the assignment of multiple
codes per activity, even for the same category, those sets of activi-
ties might overlap. A code category with n codes, can be described
as a family of sets A = {A1,A2, . . . ,An} where each Ai represents a
set of activities. Analogously, we model other categorical attributes
as families of activity sets. A division into users, however, forms
a partition of the set of all recorded activities (i.e., every activity
is assigned to exactly one attribute value). As a generalization, we
refer to assigned codes and categorical attributes as dimensions.

Figure 5 illustrates the design of the comparison diagram (Fig-
ure 1, D) and shows a comparison of two dimensions A,B. As in
Parallel Coordinates [28], vertical axes represent dimensions, here

as rounded rectangles. This allows adding multiple dimensions at
the same time, while a matrix representation would only allow the
comparison of two dimensions. Dimensions can be selected from a
list at the left side of the Comparison Panel. A direct comparison
is performed between neighboring dimensions. Adding a dimen-
sion multiple times allows an analyst to compare a dimension with
itself (e.g., to analyze the overlap of codes) or with several other
dimensions. A dimension A contains all available codes or categor-
ical attribute values {A1,A2, . . . ,An} as nodes, each representing a
set of activities. We encode the number of activities per set in the
background of nodes, mapping the size logarithmically to a gray
scale—the larger, the darker. We refrain from coloring the nodes
because color is used for other parts of the system. In this case,
gray-scale coding is sufficient to represent the number of activities.

To support visual comparison of dimensions, every two nodes
Ai,B j of neighboring dimensions A,B are linked based on their sim-
ilarity sim(Ai,B j) if sim(Ai,B j) > 0. We decided to use an asym-
metric similarity function (i.e., sim(Ai,B j) = s ; sim(B j,Ai) = s)
to better reflect the direction of subset relationships. As an asym-
metric variant of the symmetric Jaccard coefficient and similar to
precision/recall rates, we define the following similarity function:

sim(Ai,B j) =
|Ai∩B j|
|Ai|

.

If we compare a set of activities Ai with itself, similarity reaches
its maximum of 1 (sim(Ai,Ai) = 1). However, in contrast to the
Jaccard coefficient, we also get a maximum for comparing Ai to
B j if Ai is a subset of B j (Ai ⊂ B j ⇒ sim(Ai,B j) = 1). Since the
function is asymmetric, comparing B j to Ai (assuming that Ai and
B j are not equal) does not produce a maximum similarity (Ai ⊂
B j,Ai 6= B j ⇒ sim(B j,Ai) < 1). If two compared sets are disjoint,
the function is always 0 (Ai∩B j = /0⇒ sim(Ai,B j) = 0).

To visualize the similarity of two nodes, we map the similarity
value to the thickness of edges connecting nodes. Since our em-
ployed similarity function is asymmetric, we need to use directed
edges. Tapered links [27]—representing an edge as a triangle or
similar pointed shape—are a space-efficient and readable way to
encode direction information. Illustrated in Figure 5, we place two
triangles representing the two directions next to each other, with a
thin line separating the two. If the similarity values are equal, the
bars form a rectangle. Assuming we compare Ai on the left to B j on
the right, the lower triangle encodes sim(Ai,B j) and the upper one
encodes sim(B j,Ai). Hence, if both similarity values are different,
the bar becomes asymmetric: it is larger on the one end than the
other. Hovering a triangle shape allows one to explore the links and
a detailed tooltip dialog explains how metric values are computed.

Nodes can be sorted to reduce edge crossings between adja-
cent leaves, either manually via drag-and-drop or with an automatic
method. We use the Sugiyama layout for hierarchical graphs [52] as
an automatic method, sweep through all dimensions, and optimize
the current dimension in relation to the previously optimized di-
mension. In particular, we use the median method [17] as a heuris-
tic to calculate node positions in each optimization step.

The comparison diagram is linked with a currently selected ac-
tivity. That means the numbers and similarity values visualized al-
ways refer to activities currently shown in the Selected Activities
Panel (Figure 1, C). By changing the selection, an analyst might
perform different analyses, for instance, investigate the coding of a
single user or related to a specific eye movement pattern. Dimen-
sions and nodes in the comparison diagram act as selection inputs
as well: clicking on a node representing a code or user is equivalent
to selecting a code or user in the Selection Panel (Figure 1, A).

5 CASE STUDY

To demonstrate our approach, we present a case study analyzing
data from a user study [6], where we collected think-aloud, eye

Figure 6: Comparison diagram showing the overlap of coded be-
havior patterns of P01.

movement, and interaction data. The study evaluates Varifocal-
Reader [33], a visual analytics system which uses a smooth hier-
archical scroll navigation to explore large text documents. Differ-
ent parts of a document (i.e., chapter, subchapter, page, paragraph,
textpage) are displayed in vertical layers. Each layer provides vi-
sualization techniques such as word clouds, bar charts, and pic-
tograms. We recorded eye movement data using a Tobii T60XL
eye tracker (60 Hz recording rate, 24-inch screen, 1920×1200 px
screen resolution, and nine-point calibration). Gaze points are auto-
matically clustered into fixations using the Tobii Fixation Filter (ve-
locity threshold of 35 px/samples and distance threshold of 35 px).
We instrumented the analyzed system to log interaction data. The
think-aloud of users was recorded together with a screencast. Then,
student research assistants transcribed the audio.

The structure of this case study follows the four higher-level
analysis tasks defined in Section 3 and provides examples for each
of them. In the following, we analyze eight users who participated
in the study working on one task, leading to 95 activities in total.

(A1) Find Behavior Patterns
The users in the study had to find a specific text fragment. To solve
this task in an efficient manner with VarifocalReader, users need to
activate a word cloud (encode activity), select one or multiple words
in the word cloud (select activity), navigate to the appropriate text
passage, and read small parts of the text. These are the specific be-
havior patterns, which we want to identify in the following. We first
look for indicators in the eye movements and interaction logs dis-
played as word-sized visualizations. Then, we check the transcript
and, if necessary, the video playback of an activity.

We start our investigation by analyzing one user in detail (P01).
The transcript and video of the first activity show that P01 first reads
the question describing the current task (read question code). Next,
a user, ideally, activates the word cloud, indicated by a red rectangle
(encode interaction) in the word-sized AOI-based visualization for
interactions. However, it takes some time until P01 performs this
first encode interaction (Activity P01 04). From the vi-
sualization and transcript, it is still unclear if the word cloud was
activated (there are other encode interactions). The video reveals
that the user enabled a different visualization. We code this activity
unnecessary for the task. This code can later be used to investigate
problems with the user interface. Finally, in Activity P01 09, the
thumbnail image embedded in the table shows that P01 turned on
the correct word cloud; we code this as activate word cloud. In Ac-
tivity P01 10, the user selects a specific word (select word code).
Thus, we inspect the AOI where the word cloud was enabled (first
row in Activity P01 10) and a select activity which fol-
lows (green rectangle in Activity P01 10). The last part
of the task involves reading text to find and understand the relevant
text passage. This requires that the user focuses on the textpage AOI
in the right part of the interface (e.g., Activity P01 16).
We assign a read text code to activities following this pattern.

During the coding process, we attach multiple codes to one activ-
ity if several of the patterns were performed together. The compari-
son diagram visualizes this overlap when comparing the respective
code category to itself. Figure 6 gives an example for the behav-

(a) Comparison of interactions and read behavior (b) Comparison of reading mode and users (c) Scanning (d) Focused reading

Figure 7: Analyzing reading behavior of users in detail. (a) After a first coding cycle, comparing interaction codes with reading. (b) After a
second coding cycle, comparing scanning and focused reading to users. (c) Identified scanning activities for all users in user timelines. (d)
Identified focused reading activities for all users in user timelines.

ior pattern codes assigned to the activities of P01. For instance,
read question never occurs together with one of the other codes.
However, activate word cloud is often executed together with se-
lect word. Specifically, in the activities coded with select word, P01
always performs an activate word cloud action, but only half of the
activate word cloud activities carry a select word code:

sim(select word, activate word cloud) = 1.0 ,

sim(activate word cloud, select word) = 0.5 .

Next, we want to extend the coding to all users. As an exam-
ple, we show how to find occurrences of activate word cloud. To
this end, we create different fuzzy search patterns. In the example
depicted in Figure 4a, the search pattern retrieves all occurrences
where a user performed an encode interaction on the subchapter
AOI and later visually investigates this AOI. Figure 4b shows that
this pattern occurs, as expected, at the beginning of the experiment
(as noted earlier, P01 forms an exception). To make sure that these
activities are encode interactions we are interested in, we watched
the videos of the results before coding the activities with activate
word clouds. Since this pattern did not yet cover the activate word
cloud activities of all users (cf. Figure 4b), we repeat this search
with a similar pattern where users activated the word cloud in the
chapter AOI. Afterwards, we search for activities where users se-
lected a word again for the chapter and subchapter AOI and classify
the resulting activities as select word.

(A2) Higher-Level Coding
As part of a second coding cycle, we want to abstract codes to
higher level ones. In a first coding cycle, we coded user activi-
ties using the point-based word-sized eye movement visualizations.
We visually inspected the visualizations and looked for large clus-
ters in the right part (e.g., Activity P01 07) to identify
reading behavior. In addition, using the pattern search, we coded
occurrences of certain interactions of all users. Comparing these
to the reading activities as shown in Figure 7a, we see a strong re-
lation between reading and navigating—a user might not just read
but also quickly scroll through a document. Having a closer look at
the reading activities, we found that users actually applied different
reading strategies. We were able to differentiate the read activities
scanning and focused reading into a new code category. Inspecting
this new dimension in the Comparison Panel contrasting the read-
ing mode with users as shown in Figure 7b indicates three groups:
users applying only scanning (P05 and P14), users applying almost
exclusively focused reading (P07) (cf. Fig. 7d), and users applying
both scanning and focused reading (all other users). This result in-
dicates that the task users performed could be solved with little or
no focused reading.

As described above (A1), we coded all occurrences of activate
word cloud and read text. Next, we coded all occurrences of the
word Wallenstein, which is an important term to solve the task, us-
ing the text search. Selecting the code Wallenstein, we found that,

at the beginning, this code is mostly associated with activate word
cloud, and at the end, it mostly appears with read text. Thus, we
create two new codes and assign them to the activities.

(A3) Monitor Data Quality

Monitoring data quality is an important part when evaluating a user
study. Mistakes can happen in different parts of a study. Users
might misunderstand a task or somehow invalidate the recorded
data. For example, P05 accidentally found the solution of the task
without once mentioning the word Wallenstein. We identified this
outlier using the comparison diagram to compare this code with all
users. Furthermore, a typical problem during the study was that
users did not adhere to thinking aloud and had to be reminded.
Thus, some of the transcripts are rather sparse. In the activity table,
this becomes immediately obvious when comparing the length of
a transcript of an activity to the activity duration or amount of vi-
sualized events—other data streams fortunately still provide some
data to interpret and code activities. In some cases, code assign-
ment is ambiguous because different criteria exist. For example,
we assigned read to all activities that had a high amount of atten-
tion on the right part of the interface as discussed earlier. When
refining this coding with the higher-level codes scan and focus, the
video showed that, although there was a lot of attention on the right
part of the interface, some activities are not reading activities. In
general, the integration of different data streams often prevented
us from misinterpreting the data. It is simple to double-check and
refine the coding using a second data source.

(A4) Merge Code Categories

To show how our approach can be used to merge code categories,
two of the authors independently coded data from two users (P07
and P14) using an existing coding scheme. In visualization re-
search, an approach to evaluate systems is to code and analyze in-
sights users gain from the data while using a visualization. To this
end, Saraiya et al. [49] propose a coding scheme containing the cat-
egories overview, pattern, group, and detail. However, group and
pattern were not applicable in our scenario. Including the exten-
sions by Smuc et al. [50], we added the categories data insight and
tool insight. Coder C1 needed 17 minutes to code the two users
with 19 activities and coder C2 12 minutes. The typical approach
both authors used was to first look at the video and do a prelimi-
nary coding and then do a refinement mainly using the transcript,
thumbnails, and word-sized visualizations only. We used two code
categories to discern the codes of C1 and C2.

To compare the two codings, we loaded them into the compar-
ison diagram (Figure 8a). The diagram shows some overlapping
edges, which indicates that the two codings differ. For example,
Coder C1 did not use the code Tool Insight, but assigned the codes
Detail and Overview more often. Both coders applied the code Data
Insight similarly. The code Overview of C2 is a subset of Overview
of C1. Next, both coders discussed the individual decisions and

(a) Comparison of coders

(b) Comparison after merging

Figure 8: Comparison diagram of insights two coders coded. (a)
Comparison of codings of the two coders before merge. (b) Com-
parison of codings of two coders with merged codes in the middle.

merged codes creating a new category. Figure 8b shows a compar-
ison with the merged category in the middle. Here, we find that
the codes Overview and Detail were taken from coder C1, whereas
the codes Tool Insight and Data Insight were mostly taken from
coder C2. Although both coders used the same coding scheme and
discussed the meaning of the individual codes beforehand, we real-
ized that a consistent coding is hard to achieve and a comparison is
necessary to finalize a coding. The comparison diagram eases this
process and shows differences and changes.

6 FIRST USER FEEDBACK

To complement the case study, we reached out to colleagues who
are either experts in visualization, human-computer interaction, or
user studies. We sent them an email invitation with a link to a
demonstration video, accompanied by a short questionnaire con-
taining four closed-ended and five open-ended questions. This pre-
liminary user feedback aimed at collecting high-level comments
on strengths and weaknesses of our general approach as well as
ideas for future extensions. We provide the demonstration video
in a slightly revised version as well as the questionnaire as supple-
mentary material. Participants were asked to rate their expertise
in the areas of visualization, human-computer interaction, and user
studies; possible answers were no knowledge, passing knowledge,
knowledgeable, and expert. In the analysis, we included only partic-
ipants who rated themselves in at least one of these areas as experts
or as knowledgeable in at least two areas. Further, we asked for
experts’ experience with relevant research methods including, for
instance, coding qualitative data, think-aloud, and eye tracking. We
excluded respondents who did not apply at least two of these meth-
ods in the past. From 19 responses we received, we had to omit two
which did not match the above criteria. We analyzed and coded
the open-ended answers and divided them into positive and nega-
tive feedback. In the following, we refer to individual experts using
E1–E19. We also provide the codes along with the corresponding
statements as supplementary material.

The most positive feedback were statements highlighting the in-
tegration of various data sources in our approach, expressed by ten
experts. E9, for instance, reported that he or she usually employs
different tools like Excel, mind maps, or custom tools which are
not linked, and further states that “[a]ccessing everything from one
tool seems to make analyzing different data sources so much eas-
ier.” Also, six experts highlighted the filtering capabilities of our
approach. E7 wrote that this feature “could be very useful to iden-
tify patterns in user studies.” Besides feedback for particular pan-
els of the GUI, five experts pointed out the good overview which
the approach provides for codes, categories, and eye movement
data. Further, four experts emphasized the brushing-and-linking
approach and the resulting real-time updates of visualizations. E2,
for example, emphasized the possibility to “refine different aspects
[...] to see real-time effects on whole data processing stream.”

NA 1 2 3 4

0
4

8

Tabular representation in
 activity panel

NA 1 2 3 4

0
4

8

Browsing and selection of
 activities

NA 1 2 3 4

0
4

8

Eye tracking and interaction
 visualization

NA 1 2 3 4

0
4

8

Interactive coding of
 activities

NA 1 2 3 4

0
4

8

Comparison panel with
 graph

Figure 9: Experts’ ratings of the potential of certain features on a
4-point semantic differential scale from not promising at all (1) to
very promising (4), NA=I don’t know; n=17.

Most doubts referred to the complexity of the user interface.
Seven participants commented on this aspect, but two of them
also provided suggestions about how to reduce this complexity,
for example, by making the GUI more modular. E2 suggested to
“have separate screens for the different analysis tools accessible
via a menu” as this “will free up space, and allow [the user] to
improve the clarity of some of the existing features/visualizations
(e.g., point-based visualization) and continue to add new elements
(e.g., new statistics plots).” Six experts commented on particular
visualizations like the one used in the Comparison Panel or they
suggested new visualizations like “[p]ictogram-based encoding of
interactions” (E6) or “[v]isualizations that combine some of the var-
ious data sources” (E1). Aggregation may not only be utilized for
different data sources but also for multiple subjects, as E16 sug-
gests. Other possible improvements are related to particular details
of the GUI like the legend, the timestamps, or the video playback.
Regarding the video playback, E15 proposed to “show the current
playback position in the two AOI-based [...] graphs in the details
panel.” E17 made a similar remark.

In one of the closed-ended questions, we asked experts to rate
the potential of five features on a 4-point semantic differential
scale [24] from not promising at all (1) to very promising (4). Fig-
ure 9 shows ratings for each feature as bar charts. Four features
were rated as relatively promising, where the system’s capability to
interactively code activities received the highest ratings. One fea-
ture, the Comparison Panel, was rated relatively low. The fact that
three experts answered “I don’t know” for that feature suggests that
the explanation in the demonstration video was not clear enough.
The open-ended answers also supported this impression: E9, for
instance, noted that “the Comparison Panel seemed to be not as
self-explaining as most of the UI”. As that part of our approach is
novel and rather complex, analysts might need some time to famil-
iarize themselves with it.

The generalizability of the expert feedback is limited due to the
fact that we only reached out to experts we knew. Moreover, the
feedback is based on a demonstration video and only two experts
had prior experience with other CAQDAS systems. Still, experts’
responses already supported the development of our approach as
we incorporated part of the feedback and fixed usability issues in
the final version of our approach. We plan to further evaluate our
approach in a more thorough study with a larger group of users and
under controlled conditions in order to obtain additional feedback
as well as an objective and quantitative assessment.

7 DISCUSSION AND FUTURE WORK

The case study and expert feedback provide initial evidence that our
approach is valuable for analyzing qualitative data of user behav-
ior. In particular, the seamless integration of different data streams
shows high potential to improve coding quality and efficiency sig-
nificantly. The good overview of all data streams, which the activity

table provides, allows analysts to quickly identify and code behav-
ior patterns. Data quality issues of different kinds stand out as out-
liers in the visualizations or through the comparison of data streams.
Faceted browsing based on codes and flexible pattern search com-
bined with linked visualizations support a higher-level analysis and
second-cycle coding. The novel comparison diagram is a versa-
tile tool to visually analyze a coding. However, our experts rated
it not as promising as other features of our approach—an expla-
nation might be that it is somewhat more complex and not fully
self-explaining. We hypothesize that an analyst will only be able
to use the full potential of this representation after working with
the approach for several hours. However, there is potential for ana-
lysts to quickly learn how to use the system to code and establish a
coding scheme for comparison.

A limitation of our approach is that we assume that user behavior
can be split into discrete activities. This step is essential for imple-
menting a faceted browsing approach, which requires distinct enti-
ties. In our solution, specific codes can be used to group low-level
activities to larger, evenly-gapped sequences of high-level activi-
ties. We could extend our approach by allowing to split and merge
activities within the system. To realize overlapping activities, parts
of the data might be duplicated and be assigned to several activi-
ties. However, when merging codings from several coders, coders
still need to agree on a specific partition of user behavior into ac-
tivities first, otherwise assigned codes cannot be directly compared
with each other. It would be interesting to explore different auto-
matic and semi-automatic approaches for activity identification to
simplify the required preprocessing steps.

While coding assigns entities a categorical attribute, quantitiz-
ing [48] describes a general process of assigning numerical at-
tributes. Although our approach does not target this scenario ex-
plicitly, interpreting categorical attributes as numeric (e.g., codes
such as “5”) could realize it. Assigning numeric attributes provides
further opportunities to visually analyze coded data, which our ap-
proach does not yet exploit. One opportunity would be to visually
represent coded numeric data as further word-sized representations
within the activity table.

Currently, analysts assign a discrete code to activities and, if
multiple analysts code the same data, they have to agree on a coding
scheme. Another option is fuzzy coding [12]. Different saturations
could be used to indicate the degree of agreement between analy-
ses. For example, the more analysts agree on a code, the darker a
code is colored. Filtering for specific codes could retrieve a table
where activities are ranked based on the level of agreement [4].

So far, our approach focuses on an analysis of a single user in-
teracting with a visual interface. However, there exist scenarios
where multiple users perform tasks together, for instance, pair pro-
gramming or working with tabletop displays. Although we cannot
explicitly represent multiple activities performed in parallel, our ap-
proach is open for assigning an activity to a group of users instead.
This is feasible when users closely collaborate on a task. Including
several eye movement or interactions streams would be possible, it
just adds further columns to the activity table. Also, having differ-
ent columns for the transcript might be desirable to discern different
users or a user and an experimenter.

After using our tool, data evaluation might not yet be completed.
For instance, coded activities could be used as additional cate-
gories in other eye movement visualizations [7]. When applying
Grounded Theory, codes might form the basis to develop a the-
ory as the result of an analysis; an analyst sets codes into relation
and formulates memos. In a mixed-method approach, a quantitative
evaluation might follow the coding process. These activities could
be performed in an iterative process combining our approach with
other evaluation methods.

8 CONCLUSION

We have presented a visual analytics approach, which supports cod-
ing of user behavior as part of qualitative or mixed-method user
evaluations of interactive interfaces. In comparison to previous
work and existing tools, our approach integrates data-rich record-
ings of user behavior into the coding process. Word-sized visu-
alizations and a dedicated set visualization combined with faceted
browsing build an approach, which is both flexible and easy to use.
Our approach facilitates an analyst in addressing data analysis tasks
as part of a coding process to generate a high-quality coding scheme
of observed user behavior, which we demonstrated in a case study.
17 experts provided feedback and highlighted the importance of
data integration in a consistent representation. While these results
show that our suggested approach is already a valuable tool for eval-
uating user behavior, we plan to extend it to cover an even wider
range of use cases and analysis scenarios.

ACKNOWLEDGEMENTS

This work was funded by the German Research Foundation (DFG)
as part of the Priority Program SFB/Transregio 161. Fabian Beck is
indebted to the Baden-Württemberg Stiftung for the financial sup-
port of this research project within the Postdoctoral Fellowship for
Leading Early Career Researchers.

REFERENCES

[1] B. Alsallakh, L. Micallef, W. Aigner, H. Hauser, S. Miksch, and
P. Rodgers. The state-of-the-art of set visualization. Computer Graph-
ics Forum, 35(1):234–260, 2016.

[2] P. Bazeley. Computer-assisted integration of mixed methods data
sources and analyses. In A. Tashakkori and C. Teddlie, editors, SAGE
Handbook of Mixed Methods in Social & Behavioral Research, vol-
ume 2, chapter 18, pages 431–467. SAGE Publications, 2010.

[3] F. Beck, T. Blascheck, T. Ertl, and D. Weiskopf. Exploring word-
sized graphics for visualizing eye tracking data within transcribed ex-
periment recordings. In Proceedings of the First Workshop on Eye
Tracking and Visualization, 2015.

[4] F. Beck, S. Koch, and D. Weiskopf. Visual analysis and dissemination
of scientific literature collections with SurVis. IEEE Transactions on
Visualization and Computer Graphics, 22(1):180–189, 2016.

[5] R. A. Becker and W. S. Cleveland. Brushing scatterplots. Technomet-
rics, 29(2):127–142, 1987.

[6] T. Blascheck, M. John, S. Koch, L. Bruder, and T. Ertl. Triangulat-
ing user behavior using eye movement, interaction, and think aloud
data. In Proceedings of the Symposium on Eye Tracking Research &
Applications, pages 175–182, 2016.

[7] T. Blascheck, K. Kurzhals, M. Raschke, M. Burch, D. Weiskopf, and
T. Ertl. State-of-the-art of visualization for eye tracking data. In Eu-
roVis - STARs, pages 63–82, 2014.

[8] I. Boyandin, E. Bertini, and D. Lalanne. A qualitative study on the ex-
ploration of temporal changes in flow maps with animation and small-
multiples. Computer Graphics Forum, 31(3.2):1005–1014, 2012.

[9] M. Brehmer and T. Munzner. A multi-level typology of abstract vi-
sualization tasks. IEEE Transactions on Visualization and Computer
Graphics, 19(12):2376–2385, 2013.

[10] M. Burch, S. Lohmann, F. Beck, N. Rodriguez, L. Di Silvestro, and
D. Weiskopf. RadCloud: Visualizing multiple texts with merged word
clouds. In Proceedings of the International Conference on Informa-
tion Visualisation, pages 108–113, 2014.

[11] M. Burch, C. Vehlow, F. Beck, S. Diehl, and D. Weiskopf. Parallel
Edge Splatting for scalable dynamic graph visualization. IEEE Trans-
actions on Visualization and Computer Graphics, 17(12):2344–2353,
2011.

[12] F. Chevene, S. Doleadec, and D. Chessel. A fuzzy coding approach
for the analysis of long-term ecological data. Freshwater Biology,
31(3):295–309, 1994.

[13] C. Collins, F. B. Viegas, and M. Wattenberg. Parallel Tag Clouds
to explore and analyze faceted text corpora. In IEEE Symposium on
Visual Analytics Science and Technology, pages 91–98, 2009.

[14] J. M. Corbin and A. Strauss. Grounded Theory research: Procedures,
canons, and evaluative criteria. Qualitative Sociology, 13(1):3–21,
1990.

[15] E. C. Crowe and N. H. Narayanan. Comparing interfaces based on
what users watch and do. In Proceedings of the Symposium on Eye
Tracking Research & Applications, pages 29–36, 2000.

[16] W. Dou, D. H. Jeong, F. Stukes, W. Ribarsky, H. Lipford, and
R. Chang. Recovering reasoning processes from user interac-
tions. IEEE Transactions on Computer Graphics and Applications,
29(3):52–61, 2009.

[17] P. Eades and N. C. Wormald. Edge crossings in drawings of bipartite
graphs. Algorithmica, 11(4):379–403, 1994.

[18] S. Friese. Computer-aided qualitative data analysis: an overview. In
J. Fikfak, A. Frane, and D. Garz, editors, Qualitative Research, chap-
ter 12, pages 199–229. ZRC Publishing, 2004.

[19] B. G. Glaser and A. L. Strauss. The discovery of Grounded Theory:
Strategies for qualitative research. Transaction Publishers, 2009.

[20] P. Goffin, W. Willett, A. Bezerianos, and P. Isenberg. Exploring the ef-
fect of word-scale visualizations on reading behavior. In Proceedings
of the 33rd Annual ACM Conference Extended Abstracts on Human
Factors in Computing Systems, pages 1827–1832, 2015.

[21] D. Gotz and M. X. Zhou. Characterizing users’ visual analytic activity
for insight provenance. Information Visualization, 8(1):42–55, 2009.

[22] M. Harrower and C. A. Brewer. ColorBrewer.org: An online tool
for selecting colour schemes for maps. The Cartographic Journal,
40(1):27–37, 2003.

[23] J. Heer, J. Mackinlay, C. Stolte, and M. Agrawala. Graphical histories
for visualization: Supporting analysis, communication, and evalua-
tion. IEEE Transactions on Visualization and Computer Graphics,
14(6):1189–1196, 2008.

[24] D. R. Heise. The semantic differential and attitude research. In G. F.
Summers, editor, Attitude measurement, chapter 14, pages 235–253.
Rand McNally, 1970.

[25] K. Holmqvist, M. Nyström, R. Andersson, R. Dewhurst, H. Jarodzka,
and J. Van de Weijer. Eye Tracking: A Comprehensive Guide to Meth-
ods and Measures. Oxford University Press, 1st edition, 2011.

[26] J. Holsanova. Dynamics of picture viewing and picture description.
In L. Albertazzi, editor, Visual Thought: The Depictive Space of Per-
ception, pages 235–256. John Benjamins Publishing Company, 2006.

[27] D. Holten and J. J. van Wijk. A user study on visualizing directed
edges in graphs. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 2299–2308, 2009.

[28] A. Inselberg and B. Dimsdale. Parallel Coordinates: a tool for visual-
izing multi-dimensional geometry. In Proceedings of the 1st Confer-
ence on Visualization, pages 361–378, 1990.

[29] P. Isenberg, T. Zuk, C. Collins, and S. Carpendale. Grounded eval-
uation of information visualizations. In Proceedings of the BELIV
Workshop: Beyond Time and Errors – Novel Evaluation Methods for
Visualization, pages 6:1–6:8, 2008.

[30] M. R. Jakobsen and K. Hornbæk. Fisheyes in the field: Using method
triangulation to study the adoption and use of a source code visualiza-
tion. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 1579–1588, 2009.

[31] D. Keim, G. Andrienko, J.-D. Fekete, C. Görg, J. Kohlhammer, and
G. Melançon. Visual Analytics: Definition, process, and challenges.
In Information Visualization, volume 4950, pages 154–175. Springer,
2008.

[32] K. Kinley, D. Tjondronegoro, H. Partridge, and S. Edwards. Model-
ing users’ web search behavior and their cognitive styles. Journal of
the Association for Information Science and Technology, 65(6):1107–
1123, 2014.

[33] S. Koch, M. John, M. Wörner, A. Müller, and T. Ertl. VarifocalReader
– in-depth visual analysis of large text documents. IEEE Transactions
on Visualization and Computer Graphics, 20(12):1723–1732, 2014.

[34] R. Kosara, F. Bendix, and H. Hauser. Parallel Sets: Interactive explo-
ration and visual analysis of categorical data. IEEE Transactions on
Visualization and Computer Graphics, 12(4):558–568, 2006.

[35] H. Lam, E. Bertini, P. Isenberg, C. Plaisant, and S. Carpendale. Em-
pirical studies in information visualization: Seven scenarios. IEEE
Transactions on Visualization and Computer Graphics, 18(9):1520–

1536, 2012.
[36] J. Lawrance, C. Bogart, M. Burnett, R. Bellamy, K. Rector, and S. D.

Fleming. How programmers debug, revisited: An information forag-
ing theory perspective. IEEE Transactions on Software Engineering,
39(2):197–215, 2013.

[37] B. Lee, N. Henry Riche, A. K. Karlson, and S. Carpendale. Spark-
Clouds: Visualizing trends in tag clouds. IEEE Transactions on Visu-
alization and Computer Graphics, 16(6):1182–1189, 2010.

[38] A. Lewins and C. Silver. Using software in qualitative research: A
step-by-step guide. SAGE Publications, 1st edition, 2007.

[39] Z. Liu and J. Heer. The effect of interactive latency on exploratory
visual analytics. IEEE Transactions on Visualization and Computer
Graphics, 20(12):2122–2131, 2014.

[40] R. Lutz and S. Diehl. Using visual dataflow programming for in-
teractive model comparison. In Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineering, pages
653–664, 2014.

[41] P. Nguyen, K. Xi, A. Wheat, W. Wong, S. Attfield, and B. Fields.
SensePath: Understanding the sensemaking process through ana-
lytic provenance. IEEE Transactions on Visualization and Computer
Graphics, 22(01):41–50, 2016.

[42] C. North. Toward measuring visualization insight. IEEE Transactions
on Computer Graphics and Applications, 26(3):6–9, 2006.

[43] M. Pohl and F. Scholz. How to investigate interaction with informa-
tion visualisation: An overview of methodologies. In A. Ebert, C. G.
van der Veer, G. Domik, D. N. Gershon, and I. Scheler, editors, Build-
ing Bridges: HCI, Visualization, and Non-formal Modeling, volume
8345, pages 17–29. Springer, 2014.

[44] K. Reda, A. Johnson, J. Leigh, and M. Papke. Evaluating user be-
havior and strategy during visual exploration. In Proceedings of the
BELIV Workshop: Beyond Time and Errors – Novel Evaluation Meth-
ods for Visualization, pages 70–77, 2014.

[45] J. C. Roberts. State of the art: Coordinated & multiple views in ex-
ploratory visualization. In International Conference on Coordinated
and Multiple Views in Exploratory Visualization, pages 61–71, 2007.

[46] M. Rosvall and C. T. Bergstrom. Mapping change in large networks.
PloS one, 5(1):e8694, 2010.

[47] J. Saldana. The Coding Manual for Qualitative Researchers. SAGE
Publications, 2nd edition, 2012.

[48] M. Sandelowski, C. I. Voils, and G. Knafl. On quantitizing. Journal
of Mixed Methods Research, 3(3):208–222, 2009.

[49] P. Saraiya, C. North, and K. Duca. An insight-based methodology
for evaluating bioinformatics visualizations. IEEE Transactions on
Visualization and Computer Graphics, 11(4):443–456, 2005.

[50] M. Smuc, E. Mayr, T. Lammarsch, W. Aigner, S. Miksch, and J. Gart-
ner. To score or not to score? Tripling insights for participatory design.
IEEE Transactions on Computer Graphics and Applications, 29:29–
38, 2009.

[51] K. J. Srnka and S. Koeszegi. From words to numbers: how to trans-
form qualitative data into meaningful quantitative results. Schmalen-
bach Business Review, 59, 2007.

[52] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual under-
standing of hierarchical system structures. IEEE Transactions on Sys-
tems, Man, and Cybernetics, 11(2):109–125, 1981.

[53] A. Telea and D. Auber. Code Flows: Visualizing structural evolution
of source code. Computer Graphics Forum, 27(3):831–838, 2008.

[54] J. J. Thomas and K. A. Cook. A visual analytics agenda. Computer
Graphics and Applications, 26(1):10–13, 2006.

[55] E. R. Tufte. Beautiful Evidence. Graphics Press, 1st edition, 2006.
[56] C. Vehlow, F. Beck, P. Auwärter, and D. Weiskopf. Visualizing the

evolution of communities in dynamic graphs. Computer Graphics Fo-
rum, 34(1):277–288, 2015.

[57] N. Weibel, A. Fouse, C. Emmenegger, S. Kimmich, and E. Hutchins.
Let’s look at the cockpit: Exploring mobile eye-tracking for observa-
tional research on the flight deck. In Proceedings of the Symposium
on Eye Tracking Research & Applications, pages 107–114, 2012.

[58] K.-P. Yee, K. Swearingen, K. Li, and M. Hearst. Faceted metadata for
image search and browsing. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pages 401–408, 2003.

