
Detecting Bad Smells in Software Systems with
Linked Multivariate Visualizations

Haris Mumtaz
VISUS, University of Stuttgart

Germany
Haris.Mumtaz@visus.uni-stuttgart.de

Fabian Beck
paluno, University of Duisburg-Essen

Germany
Fabian.Beck@paluno.uni-due.de

Daniel Weiskopf
VISUS, University of Stuttgart

Germany
Daniel.Weiskopf@visus.uni-stuttgart.de

Abstract—Parallel coordinates plots and RadViz are two vi-
sualization techniques that deal with multivariate data. They
complement each other in identifying data patterns, clusters,
and outliers. In this paper, we analyze multivariate software
metrics linking the two approaches for detecting outliers, which
could be the indicators for bad smells in software systems.
Parallel coordinates plots provide an overview, whereas the
RadViz representation allows for comparing a smaller subset
of metrics in detail. We develop an interactive visual analytics
system supporting automatic detection of bad smell patterns. In
addition, we investigate the distinctive properties of outliers that
are not considered harmful, but noteworthy for other reasons.
We demonstrate our approach with open source Java systems
and describe detected bad smells and other outlier patterns.

I. INTRODUCTION

Sometimes inappropriate design or implementation deci-
sions degrade software quality (indicated by quality attributes,
such as maintainability and modularity) [1]. These decisions
introduce bad smells (code smells) [1], which are often re-
flected numerically in software metrics. This motivates re-
searchers to investigate software metrics for the detection of
bad smells. Mostly, multiple metrics are required to measure a
software quality attribute, hence, the detection of a bad smell
cannot be accomplished through a single metric. The basic
idea of this paper is to visually analyze the class-level code
quality as reflected in object-oriented software metrics and
observe their relations with bad smells.

Since we need to investigate several metrics at the same
time, we require the visualization to display multiple vari-
ables. Multivariate visualization techniques, such as parallel
coordinates and RadViz, apply different strategies to represent
the data. Parallel coordinates plots depict multivariate data
by displaying the variables in the form of parallel vertical
axes [2], whereas RadViz applies non-linear projection of
multivariate data onto a 2D space [3][4]. Both techniques assist
in identifying relationships among different variables [5][6],
discovering clusters, and detecting outliers [7]–[15]. In this
paper, we link these visualizations because of their com-
plementing characteristics. Parallel coordinates display data
distributions per variable, whereas RadViz is helpful in under-
standing the interplay of multiple variables. Moreover, parallel
coordinates only provide direct correlation information of
neighboring variables, whereas RadViz allows for observing
relations between more variables.

To summarize, we analyze multivariate object-oriented soft-
ware metrics using parallel coordinates plots and RadViz
to study outliers and their connection to bad smells and
software quality attributes. The main contribution of our paper
is an interactive visual analytics system to study class-level
metrics of Java systems (Section III). The interface of our
visual analytics system is shown in Figure 1. The objective
is achieved by observing the outliers in the visualizations
and analyzing their potential relationships to bad smells. We
evaluate our approach using open source Java systems (Section
IV). We find that our approach is able to detect bad smells
plotted as outliers. In addition, we explore noteworthy outliers
that are not detected as bad smells.

II. RELATED WORK

The following subsections provide an overview of related
work regarding parallel coordinates, RadViz, integration of
these methods with other visualization approaches, and bad
smell detection.

A. Parallel Coordinates Plots

Some researchers have used parallel coordinates plots to
discern clusters, for instance, Artero et al. [16] propose an
approach to identify data clusters by reducing the visual clutter
in parallel coordinates. Similarly, Fua et al. [17] develop a
multi-resolutional display using clustering that conveys infor-
mation about the clusters. Johansson et al. [18] also deal with
the limitation of parallel coordinates with visualizing large
datasets by constructing clusters with high-precision textures.
Zhou et al. [19] improve visual clustering by exploiting curved
edges and their arrangements. However, only few papers deal
with identifying outliers. Novotny and Hauser [20] present an
approach that does pre-processing in terms of detecting some
features that are used to identify outliers. Zhou et al. [21]
propose a technique for pattern identification in parallel coor-
dinates.

B. RadViz

Many data visualization techniques have been proposed that
map multivariate data into a low-dimensional space (typically
two-dimensional for visualization). In this paper, we adopt
RadViz, which applies a non-linear projection, where variables
act as anchor points [3][4]. In the context of outlier detection

Fabian Beck
Schreibmaschinentext
VISSOFT 2018



Fig. 1. Interface of our visual analytics system. A: Parallel coordinates view. B: RadViz view to explore noteworthy outlier patterns in detail with respect to
a focused set of metrics. C: Software metrics details for a selected class. D: Package explorer for selecting packages and classes. E: Options for automatic
detection of basic bad smells.

and cluster identification, the main focus of research is the
automatic layout for the anchor points because plotting of
points in RadViz is linked with ordering of dimensions [10]–
[15]. Artero et al. [10] separate clusters through a dimension
ordering and dimension reduction approach. Caro et al. [11]
also try to improve visual clusters through dimension ordering.
McCarthy et al. [13] and Albuquerque et al. [15] explore
high-dimensional visualizations in the context of data analysis
techniques for machine learning and quality measurement.

C. Integration of Parallel Coordinates and RadViz

Multiple views are useful in discovering correlations and
understanding data from multiple perspectives. However, mul-
tiple views should be employed systematically to maintain
consistency and correlations between views in order to sup-
port meaningful inferences from the visualizations. Bertini
et al. [22] build SpringView, which simultaneously shows
parallel coordinates and RadViz. The integrated view allows
observing similarities and clustering on the parallel coordi-
nates plots through interactions with the RadViz plot. The
interactions (e.g., brushing) in RadViz allow them to reduce
visual clutter in parallel coordinates to easily understand
clusters. Geng et al. [23] present angular histograms and
attribute curves to deal with high level of cluttering in parallel
coordinates. The combination of parallel coordinates plots
with angular histograms and attribute curves allows the user
to discover clusters, identify correlations, and detect outliers
without cluttering and over-plotting. Yuan et al. [24] present an

integrated view of parallel coordinates plots and scatterplots.
Pillat and Freitas [25] develop a tool that provides multiple
views (scatterplots, parallel coordinates, and RadViz), and
conduct user studies to evaluate the usability of their tool [26].
They find that users are able to identify few issues while
interacting with these visualizations, such as edge crossings in
parallel coordinates plots and missing quantitative information
in RadViz.

D. Bad Smells Detection Approaches

The majority of the studies used multiple visualizations
to detect bad smells. For instance, Carneiro et al. [27]
present four views with concern properties: package-class-
method structure, inheritance structure, dependencies graph,
and dependencies-weighted graph. The visualizations provide
support to detect blob and divergent change bad smells. Stein-
beck [28] also propose a visualization approach that combines
treemaps, heatmaps, edge bundling, and bar charts arranged
in a circular shape. Similarly, Demeyer et al. [29] develop
a hybrid approach to comprehend the program structure and
detect design anomalies in software systems. They adopt class
level, methods level, and attribute level metrics to build hybrid
visualizations (tree, histogram, correlation, etc.).

Some researchers conduct user studies with domain ex-
perts in detecting bad smells through visualizations. Murphy
and Black [30] develop a smell detector tool that provides
programmers with an overview of the bad smells and helps
understand their origins. Similarly, Santos and Mendonca [31]



involve software developers in detecting bad smell through
visualizations. There are few other detection approaches that
involve a single visualization. Simon et al. [32] explore bad
smells using distance-based cohesion. The components of a
class are plotted on a canvas and their positions are computed
using their cohesiveness with other classes. They identify
the following refactoring opportunities: move methods, move
attribute, extract class, and inline class. Dhambri et al. [33]
propose a 3D visualization approach to detect design anoma-
lies. Their technique use metrics and structural data to build
3D representations of object-oriented systems. They detect
blob, functional decomposition, and divergent change. Parnin
et al. [34] present a catalog of bad smells visualizations.
They categorize bad smells into class, methods, statement, and
collaboration. At class level, they discussed data class, blob,
and refused bequest.

It can be observed from this discussion of related work
that parallel coordinates and RadViz have been extensively
used to identify clusters and outliers. However, they have not
been studied in combination with the objective to detect bad
smells. In addition, the integrated approaches focus mainly
on introducing new interaction mechanisms, dealing with
clusters, and evaluating the usability of the visualizations. The
detection approaches identify bad smells at a very generic
level, for instance, using inheritance hierarchies and package
dependencies.

III. VISUAL ANALYTICS APPROACH

We have built a visual analytics system linking parallel
coordinates and RadViz to detect bad smells and other im-
portant outliers. Parallel coordinates provide an overview of
the plotted data along with correlation information among
neighboring axes. The purpose of RadViz is to view interesting
data features (discovered in parallel coordinates) with respect
to a focused set of metrics relating to a specific bad smell or
outlier pattern. There are several reasons why we have selected
these multivariate visualizations. In a glyph-based approach,
it is difficult to encode many variables, i.e., it is not feasible
to represent each data element as a glyph. Scatterplots do not
provide the flexibility to present more than two variables at a
time, which restricts understanding of overall picture of data.
In case of other projection methods (e.g. t-SNE), we argue that
they are less intuitive to interpret because they do not show
anchor points, which RadViz does.

In this paper, we consider object-oriented software metrics
belonging mainly to the CK metrics suite [35] and QMOOD
metrics [36]. The rationale behind selecting these metrics
is their ability to measure the object-oriented properties of
software systems at class level. We also map the metrics
to corresponding quality categories to ease understanding.
For instance, coupling between objects is mapped to the
coupling quality category. Similarly, other metrics are mapped
to their corresponding quality categories. The mapping is
accomplished using the guidelines of Jetter [37]. Table I
lists the object-oriented metrics and their relation to quality
characteristics.

Fig. 2. Highlighting interesting outliers through brushing, here, a negative
correlation between depth of inheritance (dit) and number of children (noc).

A. Parallel Coordinates View

Figure 1(A) shows the parallel coordinates view. The
neighboring axes help discover interesting data features, for
instance, positive or negative correlations between software
metrics. Functionality to invert axes is also provided to under-
stand the correlations more conveniently. In addition, parallel
coordinates plots assist in exploring patterns through brushing.
For instance, Figure 2 highlights the outliers with respect to
depth of inheritance (dit) and number of children (noc) through
brushing. As mentioned earlier, the order of axes in parallel
coordinates is static to enable the users to maintain their mental
map and semantical grouping of metrics.

Parallel coordinates are linked with RadViz to support the
identification of bad smells and outliers. The brushing at
parallel coordinates allows linking with RadViz to display
only the selected data elements. In this manner, the interesting
patterns visible in parallel coordinates can also be observed in
RadViz. The other interactions are annotated in Figure 3 and
also presented in supplemental material.

B. RadViz View

The purpose of the RadViz view is to investigate in more
detail interesting data patterns observed in the parallel coordi-
nates plot. Figure 1(B) provides the RadViz view plotted with
all variables. However, is is possible to restrict the number of
variables in RadViz by selecting specific variables from the
parallel coordinates plot. This dynamic functionality allows
the user to project interesting patterns observed in parallel
coordinates onto RadViz.

It is imperative to cross-check identified suspicious outliers
with the source code because metrics can easily be misin-
terpreted. In this regard, a direct link to the source code of
a class selected in RadViz is provided. In this manner, the
source code can also be inspected for the legitimacy of the
bad smells and outliers. We also provide a details-on-demand
panel for RadViz to show software metrics values. Only the
information of those metrics is presented that are plotted in
RadViz. The interactions are presented in Figure 5 and in the
supplemental material.



TABLE I
OBJECT-ORIENTED SOFTWARE METRICS

Coupling Complexity Cohesion Inheritance Encapsulation

• Coupling Between Ob-
jects (CBO)

• Afferent Coupling (CA)
• Efferent Coupling (CE)
• Inheritance Coupling

(IC)
• Coupling Between Meth-

ods (CBM)
• Measure of Aggregation

(MOA)

• Weighted Method per
Class (WMC)

• Average Method Com-
plexity (AMC)

• Maximum Cyclomatic
Complexity (MAXCC)

• Average Cyclomatic
Complexity (AVGCC)

• Lines of Code (LOC)
• Response For a Class

(RFC)

• Lack of Cohesion Metric
(LCOM)

• Lack of Cohesion Metric
(LOCM3)

• Cohesion Among Meth-
ods of Class (CAM)

• Depth of Inheritance
(DIT)

• Number of Children
(NOC)

• Measure of Functional
Abstraction (MFA)

• Data Access Metric
(DAM)

• Number of Public Meth-
ods (NPM)

Fig. 3. Interactions through the parallel coordinates view. A: Brushing in
parallel coordinates with wmc (weighted method per class) and loc (lines
of code). B: RadViz view showing the classes that are brushed in parallel
coordinates. C: Package explorer showing only the brushed classes. D: RadViz
is plotted with the variables selected in parallel coordinates. E: Axes in parallel
coordinates can be inverted by double-clicking the axis header (metric name).

C. Package Explorer

This component acts like file explorers, where the folders
and files are shown as a tree. The rationale is to provide a view
(Figure 1(D)) for exploring packages and classes of the plotted
software system. The package explorer is also linked with par-
allel coordinates through brushing. For instance, brushing in
the parallel coordinates plot updates the package explorer with
the brushed classes (Figure 4). It is helpful in analyzing the
association of bad smells or interesting outliers to packages.
For example, data classes with high coupling could belong
to a single package. The color mapping used for parallel
coordinates and RadViz is based on packages, meaning the
classes that belong to a package are plotted with the same
color. This makes it easier to identify the package a class
belongs to. The color mapping is also beneficial when a certain
type of bad smell is found in the classes of the same package.

Fig. 4. Brushing of three classes (XMLCharacterProperties , XMLMes-
sages , and ExceptionMessages ) in parallel coordinates shows these
classes and their package structure on the package explorer.

D. Automatic Detection of Bad Smells

The objective to add this component is to provide support
for automatic detection of basic bad smells. In this paper, we
have considered the following bad smells:

• Blob: A large class that handles most of the systems
processing [38].

• Functional decomposition: A class with many private data
members and few methods [38].

• Spaghetti code: A class that declares long methods with-
out parameters [38].

The detection of these bad smells is accomplished by
executing rules presented by Ouni et al. [39] and Kessentini
et al. [40]:

• R1: IF(lines of code (loc) ≥ 1500 AND average method
complexity (amc) ≥ 129) OR weighted method per class
(wmc) ≥100) THEN blob.

• R2: IF(number of public methods (npm) ≤ 8 AND
weighted method per class (wmc) ≥ 16) THEN functional
decomposition.

• R3: IF(average method complexity (amc) ≥ 151) THEN
spaghetti code.

Here, lines of code (loc) counts the lines of code in a
class; average method complexity (amc) computes the average
method size of each class; weighted method per class (wmc)
sums the complexities of all the methods in a class (if
complexities are unity then wmc equals number of methods



Fig. 5. Interactions through RadViz. The point (class) on RadViz can be
hovered or clicked. If hovered, the corresponding edge (class) in the parallel
coordinates plot is highlighted. The source code is shown in a separate window
if the point (class) is clicked.

in a class); number of public methods (npm) counts all the
public methods. Once we have detected the bad smells through
our approach, we observe whether the bad smells correspond
to their distinctive nature as outliers. The selection of a bad
smell from the interface (Figure 1(E), also presented in the
supplemental material) would detect the particular bad smell
by highlighting the points and edges in RadViz and parallel
coordinates, respectively.

E. Implementation

The system is built using D3js because of the flexibility it
provides for implementing the visualizations. It reads software
metrics from a CSV file to plot the visualizations.

IV. RESULTS AND ANALYSIS

To reiterate, the main purpose of the approach is to iden-
tify outliers, which could be the indicators of bad smells.
We demonstrate the approach with three open source Java

projects: xerces 1.21, xalan 2.42, and poi 3.03. The selected
projects have been extensively investigated with respect to
bad smells detection in other studies, primarily in empirical
studies [39] [40]. In this paper, we analyze these projects
using our visual analytics approach for detection of bad smells
and other important outliers. We present our results in detail
for one Java project (xerces 1.2), to thoroughly explore and
understand bad smell detection and other important outliers.
The xerces4 is a processor for parsing XML (Extensible
Markup Language) files. The detection results from other
projects are summarized in Table II and presented in more
detail as part of the supplemental material.

A. Bad Smells Analysis

As a starting point, we find the connection between outliers
and bad smells. In other words, we observe whether detected
bad smells are depicted as outliers in our linked visualizations.
Through our automatic detection functionality, we are able
to see the plotting of blob, functional decomposition, and
spaghetti code as outliers in RadViz. Figure 6 shows the
automatic detection of these bad smells in both visualizations
in xerces 1.2. It can be observed that the detected bad smells
are visually depicted as outliers in RadViz (Figure 6(d), 6(e),
and 6(f)). This can also be seen in parallel coordinates (Fig-
ure 6(a), 6(b), and 6(c)). For instance, Figure 6(a) shows high
values of lines of code (loc) and average method complexity
(amc) metrics associated with blob bad smell that also make
blob to be perceived as outlier in parallel coordinates.

To further support this argument, we focused the variables
in RadViz to four software metrics (weighted method per class
(wmc), lines of code (loc), average method complexity (amc),
and number of public methods (npm)), which are all used
in detection rules. We observed the connection between bad
smells and outliers in abridged RadViz as well. Data elements
possessing bad smells as well can be clearly seen as outliers
in Figure 7. We noticed a similar behavior of bad smells in
the other projects.

We also explored the associations of bad smells in terms
of packages of the project. For instance, a bad smell type
can belong to a single package of a project. In this case,
the color mapping described in Section III is helpful because
it is easier to see the affiliations of detected bad smells
and their respective packages. We encountered an instance in
xerces 1.2 where five classes out of six, that have functional
decomposition, belong to a single package. This can be seen
in parallel coordinates and RadViz in Figure 6(b) and 6(e),
respectively. By skimming through the source codes of these
classes, we found that they basically define different tokens
for parsing. The functionality here is tokenization, which is
decomposed into multiple classes. That is why it is classified
as functional decomposition bad smell.

1https://github.com/apache/xerces2-j/releases/tag/jaxp-ri-1 2 0-fcs-04
2https://github.com/apache/xalan-j/releases/tag/xalan-j 2 4 0
3https://github.com/apache/poi/releases/tag/REL 3 0
4http://xerces.apache.org/



(a) Blob detection in parallel coordinates

(b) Functional decomposition detection in parallel coordinates

(c) Spaghetti code detection in parallel coordinates

(d) Blob detection in RadViz (e) Functional decomposition detection in RadViz (f) Spaghetti code detection in RadViz

Fig. 6. Automatic detection of bad smells in xerces 1.2.



(a) RadViz view with bad smells re-
lated metrics

(b) Blob detection (c) Functional decomposition detec-
tion

(d) Spaghetti code detection

Fig. 7. Automatic detection of bad smells in xerces 1.2 visualizing four metrics in RadViz.

We also discovered classes that carry multiple bad
smells. For instance, we found four classes (UTF8Reader,
UTF8CharReader, XMLCharacterProperties, and XMLMes-
sages) in xerces 1.2 that have both blob and spaghetti code.
We examined UTF8Reader to verify the existence of both
these bad smells. We observed that although the lines of
code (loc) metric is not very high, complexities of methods
(average method complexity (amc)) were significant, which
makes these classes carry blob and spaghetti code. The reason
why UTF8Reader has a significant average method complexity
(amc) is a large number of if-else and switch statements, which
are the key contributors of spaghetti code.

B. Outliers Analysis
We also explored outliers that are not detected as any of our

selected bad smells. This investigation assists in addressing
questions like why a particular outlier is not detected by our
detection rules and what metrics properties have classified it
as an outlier but not one of the investigated bad smells.

We observed an instance in xerces 1.2 where two classes
(XMLCharacterProperties and RegularExpression ) are
plotted as outliers in parallel coordinates and RadViz, but
only XMLCharacterProperties is detected as a bad smell. In
RadViz, they are adjacent to each other, which reflects simi-
larities in their metrics values. This behavior can be visually
observed in Figure 8 and Figure 9. XMLCharacterProperties
is detected with blob and functional decomposition, but Regu-
larExpression does not possess any of these bad smells. The
reason behind is high values of lines of code (loc) and average
method complexity (amc) in XMLCharacterProperties , but
low values of weighted method per class (wmc) and average
method complexity (amc) in RegularExpression . However, it
is seen as an outlier because it has high cyclomatic complexity.

Here, the question arises why method complexities are
low, but cyclomatic complexity (cc) is high. To answer this
concern we examined the source code of RegularExpression .
We found that the implementation has a large number of
while and for loops with if-else statements. Since cyclomatic
complexity (cc) is computed using control flow graph, the large
number of loops makes it complex. This is the reason why
RegularExpression has high cyclomatic complexity (cc) and

Fig. 8. XMLCharacterProperties and RegularExpression are adjacent
to each other in RadViz, but only XMLCharacterProperties is detected as
a bad smell. QName is a distant outlier but not identified as any of our
investigated bad smells.

Fig. 9. High average method complexity (amc) and lines of code (loc) make
XMLCharacterProperties an outlier and a blob. Low weighted method
per class (wmc) and average method complexity (amc) but high cyclomatic
complexity (cc) make RegularExpression an outlier but not a blob.

low method complexities, which depicts it as an outlier but
not a blob or spaghetti code.

We also identified a distant outlier (QName ) that is not
classified with any of our bad smells. This is also annotated
in Figure 8. The reason that QName is an outlier is that the



majority of the metrics have low values except for coupling-
related metrics. Since coupling metrics do not measure blob,
functional decomposition, and spaghetti code, QName is not
classified as a bad smell.

V. DISCUSSION AND LIMITATIONS

Our results show the ability and usefulness of our approach
to detect bad smells and other important outliers. We argue
that the majority of the existing approaches achieve bad smells
detection at a generic level, for instance, using only lines of
code to determine the size of classes and then displaying them
as boxes. Similarly, assessing the size of project by visualizing
inheritance tree using depth of inheritance and number of
children. Our visual analytics approach provides support for
multiple metrics and visual exploration, which we argue is
beneficial to understand bad smells and build relationships
with other data elements. This helps not only detect bad
smells but also assists in building the connection between
detected bad smells and other important data elements. Our
system is practical in a way that it has shown working with
software metrics of real open source projects. In addition, we
are able to reach interesting results that motivate to study more
software projects. Our system could be of interest to software
practitioners who want to understand the interplay of software
metrics and detect bad smells.

There are some limitations of our approach. The automatic
detection of bad smells is dependent on the published detection
rules. In this case, the threshold values of software metrics are
of critical importance. However, this only partly affects our
results and findings because we provide the option to explore
the data for further bad smells. In other words, the visual
depiction of data complements the detection rules. Another
limitation is related to the order of metrics in RadViz. The
option to dynamically order the metrics in RadViz would
provide more exploration flexibility. In parallel coordinates,
the mental map could be disturbed if axes are inverted. We
argue that it is beneficial to include the inversion of axes prop-
erty in parallel coordinates because it helps in understanding
correlations more conveniently. Our results are limited to the
detection and exploration of bad smells investigated in this
paper. The inclusion of other bad smells would further improve
the applicability of our approach. In terms of evaluation,
we tested our approach only on medium-scale Java projects.
Finally, we cannot make statements about the usability of the
approach because it is not yet tested by users other than the
authors.

VI. CONCLUSION AND FUTURE WORK

Parallel coordinates and RadViz are visualization techniques
that deal with multivariate data. These visualizations have been
used for identifying data patterns, clusters, and outliers. In this
paper, we demonstrated our approach, which links parallel co-
ordinates and RadViz, to analyze multivariate object-oriented
software metrics to detect outliers, which could be connected
to bad smells in the context of software quality. To demonstrate
our approach we considered three bad smells (blob, functional

decomposition, and spaghetti code) to assess their detection
in open source Java systems. As a result, we found that our
approach helps visually identify the data elements as bad
smells, which are also perceived as outliers in the linked
visualizations. In addition, we analyzed software metrics and
examined source codes of the detected bad smells and other
noteworthy outliers. In future work, we aim to investigate more
types of bad smells to generalize our approach. In addition, we
plan to evaluate the usability of our visual analytics approach
to improve its interface design.

ACKNOWLEDGMENT

Fabian Beck is indebted to the Baden-Württemberg Stiftung
for the financial support of this research project within the
Postdoctoral Fellowship for Leading Early Career Researchers.

REFERENCES

[1] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring:
Improving the Design of Existing Code. Addison-Wesley Professional,
1999.

[2] A. Inselberg, “The plane with parallel coordinates,” The Visual Com-
puter, vol. 1, no. 2, pp. 69–91, 1985.

[3] K. Daniels, G. Grinstein, A. Russell, and M. Glidden, “Properties of
normalized radial visualizations,” Information Visualization, vol. 11,
no. 4, pp. 273–300, 2012.

[4] G. Grinstein, C. B. Jessee, P. Hoffman, P. ONeil, and A. Gee, “High-
dimensional visualization support for data mining gene expression data,”
DNA Arrays: Technologies and Experimental Strategies, CRC Press, pp.
86–131, 2001.

[5] J. Heinrich and D. Weiskopf, “State of the art of parallel coordinates.”
in Eurographics (STARs), 2013, pp. 95–116.

[6] H. Siirtola and K.-J. Räihä, “Interacting with parallel coordinates,”
Interacting with Computers, vol. 18, no. 6, pp. 1278–1309, 2006.

[7] H. Hauser, F. Ledermann, and H. Doleisch, “Angular brushing of
extended parallel coordinates,” in IEEE Symposium on Information
Visualization. IEEE, 2002, pp. 127–130.

[8] M. Ankerst, S. Berchtold, and D. A. Keim, “Similarity clustering of
dimensions for an enhanced visualization of multidimensional data,” in
IEEE Symposium on Information Visualization. IEEE, 1998, pp. 52–60.

[9] W. Peng, M. O. Ward, and E. A. Rundensteiner, “Clutter reduction
in multi-dimensional data visualization using dimension reordering,” in
IEEE Symposium on Information Visualization. IEEE, 2004, pp. 89–96.

[10] A. O. Artero, M. C. F. de Oliveira, and H. Levkowitz, “Enhanced
high dimensional data visualization through dimension reduction and
attribute arrangement,” in Tenth International Conference on Information
Visualization. IEEE, 2006, pp. 707–712.

[11] L. Di Caro, V. Frias-Martinez, and E. Frias-Martinez, “Analyzing the role
of dimension arrangement for data visualization in RadViz,” in Pacific-
Asia Conference on Knowledge Discovery and Data Mining. Springer,
2010, pp. 125–132.

[12] G. Leban, B. Zupan, G. Vidmar, and I. Bratko, “Vizrank: Data visu-
alization guided by machine learning,” Data Mining and Knowledge
Discovery, vol. 13, no. 2, pp. 119–136, 2006.

[13] J. F. McCarthy, K. A. Marx, P. E. Hoffman, A. G. Gee, P. O’Neil,
M. L. Ujwal, and J. Hotchkiss, “Applications of machine learning
and high-dimensional visualization in cancer detection, diagnosis, and
management,” Annals of the New York Academy of Sciences, vol. 1020,
no. 1, pp. 239–262, 2004.

[14] A. Russell, R. Marceau, F. Kamayou, K. Daniels, and G. Grinstein,
“Clustered data separation via barycentric radial visualization,” in Pro-
ceedings of the International Conference on Modeling, Simulation and
Visualization Methods (MSV), 2014, pp. 101–107.

[15] G. Albuquerque, M. Eisemann, D. J. Lehmann, H. Theisel, and M. Mag-
nor, “Improving the visual analysis of high-dimensional datasets using
quality measures,” in IEEE Symposium on Visual Analytics Science and
Technology (VAST). IEEE, 2010, pp. 19–26.

[16] A. O. Artero, M. C. F. de Oliveira, and H. Levkowitz, “Uncovering clus-
ters in crowded parallel coordinates visualizations,” in IEEE Symposium
on Information Visualization. IEEE, 2004, pp. 81–88.



[17] Y.-H. Fua, M. O. Ward, and E. A. Rundensteiner, “Hierarchical parallel
coordinates for exploration of large datasets,” in Proceedings of the
Conference on Visualization. IEEE Computer Society Press, 1999,
pp. 43–50.

[18] J. Johansson, P. Ljung, M. Jern, and M. Cooper, “Revealing structure
within clustered parallel coordinates displays,” in IEEE Symposium on
Information Visualization. IEEE, 2005, pp. 125–132.

[19] H. Zhou, X. Yuan, H. Qu, W. Cui, and B. Chen, “Visual clustering
in parallel coordinates,” in Computer Graphics Forum, vol. 27, no. 3.
Wiley Online Library, 2008, pp. 1047–1054.

[20] M. Novotny and H. Hauser, “Outlier-preserving focus + context visual-
ization in parallel coordinates,” IEEE Transactions on Visualization and
Computer Graphics, vol. 12, no. 5, pp. 893–900, 2006.

[21] H. Zhou, W. Cui, H. Qu, Y. Wu, X. Yuan, and W. Zhuo, “Splatting
the lines in parallel coordinates,” in Computer Graphics Forum, vol. 28,
no. 3, 2009, pp. 759–766.

[22] E. Bertini, L. Dell’Aquila, and G. Santucci, “Springview: Cooperation of
radviz and parallel coordinates for view optimization and clutter reduc-
tion,” in Third International Conference on Coordinated and Multiple
Views in Exploratory Visualization. IEEE, 2005, pp. 22–29.

[23] Z. Geng, Z. Peng, R. S. Laramee, J. C. Roberts, and R. Walker, “Angular
histograms: Frequency-based visualizations for large, high dimensional
data,” IEEE Transactions on Visualization and Computer Graphics,
vol. 17, no. 12, pp. 2572–2580, 2011.

[24] X. Yuan, P. Guo, H. Xiao, H. Zhou, and H. Qu, “Scattering points in
parallel coordinates,” IEEE Transactions on Visualization and Computer
Graphics, vol. 15, no. 6, pp. 1001–1008, 2009.

[25] R. M. Pillat and C. M. Freitas, “Coordinating views in the InfoVis
toolkit,” in Proceedings of the Working Conference on Advanced Visual
Interfaces. ACM, 2006, pp. 496–499.

[26] R. M. Pillat, E. R. Valiati, and C. M. Freitas, “Experimental study on
evaluation of multidimensional information visualization techniques,” in
Proceedings of the Latin American Conference on Human-Computer
Interaction. ACM, 2005, pp. 20–30.

[27] G. d. F. Carneiro, M. Silva, L. Mara, E. Figueiredo, C. Sant’Anna,
A. Garcia, and M. Mendonca, “Identifying code smells with multi-
ple concern views,” in Brazilian Symposium on Software Engineering
(SBES). IEEE, 2010, pp. 128–137.

[28] M. Steinbeck, “An arc-based approach for visualization of code smells,”
in 24th International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 2017, pp. 397–401.

[29] S. Demeyer, S. Ducasse, and M. Lanza, “A hybrid reverse engineering
approach combining metrics and program visualisation,” in Sixth Work-
ing Conference on Reverse Engineering. IEEE, 1999, pp. 175–186.

[30] E. Murphy-Hill and A. P. Black, “An interactive ambient visualization
for code smells,” in Proceedings of the 5th International Symposium on
Software Visualization. ACM, 2010, pp. 5–14.

[31] J. A. M. Santos and M. G. de Mendonça, “Exploring decision drivers
on god class detection in three controlled experiments,” in Proceedings
of the 30th Annual ACM Symposium on Applied Computing. ACM,
2015, pp. 1472–1479.

[32] F. Simon, F. Steinbruckner, and C. Lewerentz, “Metrics based refac-
toring,” in Fifth European Conference on Software Maintenance and
Reengineering. IEEE, 2001, pp. 30–38.

[33] K. Dhambri, H. Sahraoui, and P. Poulin, “Visual detection of design
anomalies,” in 12th European Conference on Software Maintenance and
Reengineering. IEEE, 2008, pp. 279–283.

[34] C. Parnin, C. Görg, and O. Nnadi, “A catalogue of lightweight visu-
alizations to support code smell inspection,” in Proceedings of the 4th
ACM Symposium on Software Visualization. ACM, 2008, pp. 77–86.

[35] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” IEEE Transactions on Software Engineering, vol. 20, no. 6, pp.
476–493, 1994.

[36] J. Bansiya and C. G. Davis, “A hierarchical model for object-oriented
design quality assessment,” IEEE Transactions on Software Engineering,
vol. 28, no. 1, pp. 4–17, 2002.

[37] A. Jetter, “Assessing software quality attributes with source code met-
rics,” Diploma thesis, University of Zurich, Department of Informatics,
Zurich, 2006.

[38] W. H. Brown, R. C. Malveau, H. W. McCormick, and T. J. Mowbray,
AntiPatterns: Refactoring Software,Aarchitectures, and Projects in Cri-
sis. John Wiley & Sons, Inc., 1998.

[39] A. Ouni, M. Kessentini, H. Sahraoui, and M. Boukadoum, “Maintain-
ability defects detection and correction: a multi-objective approach,”
Automated Software Engineering, vol. 20, no. 1, pp. 47–79, 2013.

[40] M. Kessentini, W. Kessentini, H. Sahraoui, M. Boukadoum, and A. Ouni,
“Design defects detection and correction by example,” in 19th Interna-
tional Conference on Program Comprehension (ICPC). IEEE, 2011,
pp. 81–90.




