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Abstract—Software performance may be significantly affected
by source code modifications. Understanding the effect of these
changes along different software versions is a challenging and
necessary activity to debug performance failures. It is not
sufficiently supported by existing profiling tools and visualization
approaches. Practitioners would need to manually compare
calling context trees and call graphs. We aim at better supporting
the comparison of benchmark executions along multiple software
versions. We propose Performance Evolution Matrix, an inter-
active visualization technique that contrasts runtime metrics to
source code changes. It combines a comparison of time series data
and execution graphs in a matrix layout, showing performance
and source code metrics at different levels of granularity. The
approach guides practitioners from the high-level identification
of a performance regression to the changes that might have
caused the issue. We conducted a controlled experiment with
12 participants to provide empirical evidence of the viability of
our method. The results indicate that our approach can reduce
the effort for identifying sources of performance regressions
compared to traditional profiling visualizations.

Index Terms—Performance, software visualization, software
evolution, performance regression.

Video companion – https://vimeo.com/350953456

Artifact – https://doi.org/10.5281/zenodo.3355414

I. INTRODUCTION

Software performance may be affected by multiple source
code changes along source code evolution [8], [22]. Comparing
software executions is commonly applied to isolate the code
changes that produce an unexpected behavior at runtime [7].
Developers compare and contrast performance variations in
order to understand how and why the program performance
varied unexpectedly. However, state of the art code execution
profilers do not properly consider multiple software versions
to carry out their analysis. Profilers commonly used are
limited to comparing only two executions [26]. In addition,
the profile information is visually represented using call
context trees and call graphs, forcing developers to manually
map performance information to source code changes. As a
consequence, performance debugging along multiple software
versions is a costly activity [17].

In this paper, we propose Performance Evolution Matrix, an
interactive visualization technique that contrasts performance
variations and source code changes at package, class, and
method level. It uses a matrix layout (Figure 1), where each

cell shows source code and runtime metrics for the execution
of a given software component (a row) in a given version
(a column). It allows practitioners to analyze performance
of software components along multiple software versions at
once. The matrix also supports multiple interactions to display
detailed information on demand.

We present a real-life example to introduce all the features
of our visualization technique. We also conducted a controlled
experiment to provide empirical evidence of the viability of
our approach. Our experiment with 12 participants compares
the Performance Evolution Matrix and two alternative repre-
sentations commonly used in software performance debugging:
a calling context tree (as offered by TPTP1) and the merger
of two calling context trees (as offered by JProfiler2). The
results indicate that our matrix reduces the time to solve a
realistic software performance problem. These reductions are
statistically significant for some tasks (e.g., spotting a method
having a performance and source code variation).

II. RELATED WORK

Execution comparison is used to understand the effect of
different runs [28], [33], inputs, or program versions [23]. In
addition, several tools have been proposed to help developers
to spot and categorize performance regressions [7], [14], [17],
[18], [20], [22]. In contrast to these works, our goal is to provide
an interactive visualization to assist developers when analyzing
performance variations caused by source code changes across
software versions. This section positions our work against a
number of graphical representations to compare executions of
different software versions.

Our visualization approach is inspired by different techniques
used in other applications; we combined, tailored, and extended
these to a novel and application-specific visual representation.
The basic structure of showing evolving quantities in a hierarchy
goes back to Timeline Trees [9], which we augmented by arcs
to show dynamic dependencies, similar to TimeArcTrees [13].
Integrating small additional timelines for each execution is
a form of sparkline visualization [29]. This paper employs
a cartesian layout to relate software artifacts metrics with

1https://projects.eclipse.org/projects/tptp.platform
2https://www.ej-technologies.com/products/jprofiler/overview.html
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Fig. 1. Performance Evolution Matrix - Illustrating example. The left part shows software components (packages, classes, and methods); the columns represent
the versions of these components. Each cell represents a software component in a given version and it is composed of two boxes (top and bottom box). The
width of the top box is proportional to the method modifications made in the component in a given version. The height of bottom box is proportional to the
components performance in that version. The color of the bottom box varies from red to green indicating if the performance becomes slower or faster in a
given version. The execution timeline shown on demand for selected versions detail the time consumption during the execution of the benchmark. Edges show
the callee/caller relations between software components (caller = a method that calls another, callee = a method called by another).

software versions [19], [21], [24], [30]. Our visualization also
shares similarities with Parallel Edge Splatting [10], which can
be used to show evolving static call graphs [10] or dynamic call
graphs [2], but not the combination of evolving and dynamic
information.

Profiling tools commonly display runtime information in a
calling context tree structure. Prior research proposes to visually
compare calling context trees to analyze the difference between
executions using text tree widgets (as offered by JProfiler), ring
charts [1], flame graphs [8], and polymetric views [26]. Holten
et al. [15] proposed an approach to compare hierarchically
organized data, which may be also applicable to call context
trees. Trümper et al. [28] present a visualization based on
icicle plots and edge bundles to compare execution traces.
Bergel et al. [6] proposed a Behavioral Evolution Blueprint to
compare execution from two software versions; the blueprint
shows the runtime information in a call graph; this blueprint
considers whether or not a method has been changed and if this
method consumes more or less execution time. However, most
of these visualizations are limited to comparing two executions
and providing few source code metrics, forcing developers to
manually map performance information to source code changes.
Our approach shows a call graph of multiple software versions
and groups the nodes by classes and packages.

A number of tools show profiling information in the source
code view. Waddell et al. [31] propose the use of code line color
to indicate the execution frequency. Beck et al. [3] propose
in situ visualizations to display the consumed runtime and
threads accessing for each method. The visualization also
shows the consumed runtime among callers and callees of
each method. However, these approaches are not prepared to
compare different versions.

III. PERFORMANCE EVOLUTION MATRIX

The Performance Evolution Matrix is an interactive visual-
ization technique that contrasts performance variations against

source code changes. Information is structured along both the
static and dynamic structure of an application.

A. Data Model

Our technique is designed to visualize the performance and
source code evolution of software components along n software
versions V := {v1, . . . , vn}, where each vi corresponds to
a version name. Our model considers that a project has s
methods M := {m1, . . . ,ms}, t classes C := {c1, . . . , ct},
and u packages P := {p1, . . . , pu}. Then W := M ∪ C ∪
P ∪ {Project} is the set of components in a software project,
and Q ⊆W × V are the versioned components. Here, a tuple
q = (w, v) ∈ Q denotes component w in version v.

Components in our approach have a hierarchical structure
H = {h1, . . . , hk}, where each hierarchical element h =
(w, {w1, ..., wl}) ∈ H associates a parent component w with l
subcomponents. If the parent component is a package p ∈ P
the hierarchy (p, {c1, . . . , cl}) defines the containment relation
between the package p and the classes {c1, . . . , cl}. A hierarchy
(c, {m1, . . . ,ml}) binds a class c ∈ C with its methods. All
components, except for the root package p0, are exactly once
listed in a list of subcomponents in the hierarchy H . Only
packages and classes can be used as parent components, at
maximum one time per each package or class.

Our approach also visualizes a sequence of dynamic call
graphs ϑ = (G1, . . . , Gn). There is a call graph Gi for each
software version vi ∈ V . A graph Gi is defined by a tuple
(Wi, Ei), where Wi ⊆W form the vertices of the graph and
Ei ⊆Wi ×Wi is the set of directed edges.

B. Layout

Our visualization uses a matrix layout where each column
in the matrix represents a software version vi ∈ V (e.g.,
Version 1.01, 1.02) and each row is a component wi ∈ W .
Figure 1 gives an overview of the matrix layout and the
components of our visualization. The first column lists the
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analyzed software components. Subsequent columns indicate
the performance for each version. The column corresponding
Version 1.03 has been expanded to show charts indicating
execution time variations during the benchmark execution
(described in Section III-D). Each row of the matrix shows the
performance evolution of a software component (e.g., Package
A, Method D). Performance information located at the position
(w, v) ∈ Q uses a performance glyph and execution time
frames (only when expanded, as in Version 1.03).

The hierarchy H of the software components is represented
using an indented tree layout. Components at each hierarchical
level are sorted based on their execution time share. By using
this criterion, the components with greater execution time are
above components with lesser execution time, thus reducing
the effort for practitioners to search for costly components.

Edges between classes and packages are the result of
aggregating edges at the method level. For example, a class
c1 invokes another class c2 if at least one method m1 of c1
invokes at least one method m2 of c2. Similarly, invocations
between packages are deduced from invocations between
classes contained in those packages.

Our visualization provides a number of interactions to filter
the amount of information shown in the visualization. The
software components in a hierarchy h ∈ H can be hidden or
displayed by clicking on the name of the software component
(e.g., clicking on Package A hides classes B and C, clicking
once more on the package shows the classes again). In addition,
we hide software components that: i) do not participate in the
benchmark execution or ii) have an execution time below 2%.
Note that this threshold may be manually adjusted.

C. Software Component Version Glyph

We represent each software component version with a glyph
consisting of two rectangles. The shape and color of a glyph
reflect the variation in both the source code and the performance
(Figure 1, top right side).
Number of Modified Methods. The width of the top box
indicates the number of modified methods in a class, package
and project (modifications(w, vi)). We consider that a method
has been modified if it has different source code than in its
previous version (vi−1). In case of methods, the number of mod-
ified methods is zero or one (modifications(m, v) ∈ {0, 1}),
indicating if the method has been modified or not. Visually
identifying the number of changes in each component is useful
for navigating along the matrix by using interactions and
filtering components.

The width can have four sizes: zero, small, medium, and
large to represent: i) zero method changes, ii) less than 5
method modifications, iii) less than 10 method modifications
and iv) greater than or equal to 10 method modifications (these
thresholds are configurable). We use four categories instead of
a linear scale for different reasons: versions with no changes
should be clearly discernible from those with at least a single
change; precise numbers are not important because the number
of changed methods is only a rough estimate of quantity of
change; widths of boxes are hard to compare if the boxes

are scattered across the screen space (but for four different
sizes, it should still be possible); there would not be enough
space to show an axis with labels to read the precise values.
For instance, if the component is a class, then the width is
related to the number of modified methods in that class for that
version, modifications(c, v). In Figure 1, Class B in Version
1.03 has one modified method, which is C. In Version 1.04,
Package A has more than 5 modified methods, the top box is
therefore larger.
Execution Time. Let us define time(w, v) as the accumulated
execution time associated to a component w in a version v.
By accumulated execution time we refer to the execution time
directly consumed by the component w and all its direct and
indirect subcomponents. For a method, the height of the bottom
box is linear to the accumulated execution time.

The highest box is typically assigned to the execution entry
points (e.g., the main method). In the case of classes, packages,
and the overall project, the height is related to the accumulated
execution time of the most expensive method of the class,
package, or project respectively. Note that there is no formal
metric to estimate the execution time of a class or a package.
For instance, if we consider the execution time of a class as the
sum of the execution times of the contained methods, it may
poorly represent the class execution time, because it assumes
that each method execution time is independent, which is not
always true. A class’ methods can be directly or indirectly
called by each other, making the sum or the average execution
time a misleading estimation. For this reason, we use the
execution time of most expensive method of a class (or package)
to determine the glyph height. For example, in Figure 1 Method
C is modified in Version 1.03. The bottom box of this method
is high, which means the method takes a great share of the
execution time. Note that the width of the bottom box is
constant and reflects the matrix column width.
Execution Time Variation. Let be ∆ time(w, vi) the execution
time variation between version vi and vi−1 as follows:

∆ time(w, vi) = (time(w, vi) − time(w, vi−1))/ time(w, vi−1) (1)

The color of the bottom box denotes the execution time
variation of a component w. Red is associated with a slower
execution and green with a faster execution in vi. Colors are
normalized to represent different variation values, as shown in
Figure 1 (right side). We use a divergent colormap: the color
scale uses gray as an intermediate color instead of directly
blending from red to green. This is a form of hue-preserving
color blending [12], which avoids potentially misleading mixed
colors for interpolated values. Despite the use of color, our
visualization is readable for users with a color vision deficiency
such as red-green blindness: color only acts as an amplifier for
change, but is redundant to the encoding of the performance
changes in the heights of neighboring boxes.

In Figure 1, the execution time of Version 1.03 is
∆ time(Project,Version 1.03) ≥ 100% longer than the one of
Version 1.02 since it is red. Method C is likely to be the cause
of the performance regression since it is modified in Version
1.03 and painted in red.
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Glyph Absence. In case a software component does not exist
for a given version (not part of a version or excluded from
the execution in a particular version), no glyph is shown. For
instance, Figure 4 illustrates this situation where several classes
are used in the benchmark only since Version 1.06.

D. Execution Timeline

The execution timeline panel (Figure 2 left side) indicates
on a temporal axis for each software component its time con-
sumption share during a benchmark execution for a particular
version. Execution timelines are obtained by clicking on the
version name (e.g., the label “1.03” was clicked in Figure 1 to
obtain the timelines).

Method Execution Timeline. The code execution profiler
estimates the execution time share of each method for a time
frame of fixed size. This information is used to render the
method execution timeline. This diagram shows the evolution
of the time share of a method within one execution from left
to right. It highlights the time frames where a component
participates in the execution. The height ranges from 0% (the
method is not used in the time frame) to 100% (the method is
used throughout the full time frame). For instance, Figure 2
(left side) shows that a method active half the second time
frame (50%), all the third time frame (100%) and half the last
time frame (50%).

Merged Timelines. For component containers, such as classes
and packages, timelines of the contained components are
merged. The merge operation considers the highest time frame
of the merged set of time frames as illustrated in Figure 2
(top-right side).

Execution Timeline Difference. For a given software version,
the execution timelines show the time share during the
execution in that version (in blue) and indicate differences
from the previous software version (in gray).

For instance, consider the timeline in Figure 2 (bottom-right
side). The top-left bar chart displays the execution timeline
of the previous version of the method, the top-right bar chart
displays the timeline of the selected version. The two execution
timelines are then superposed. In particular, Figure 2 shows that
this method spent more time executing in the new version than
in the previous version since the gray portion is horizontally

Fig. 3. Popup: Source code differences

shorter than the blue portion. Moreover, both executions are
initiated at around the same time.

E. Call Graph and Source Code Differences

Edges between components w ∈W are deduced from the
method calls. Clicking on a software component glyph makes
the dynamic call graph appear for the component. Incoming
calls are located on the left hand side of the selected glyph and
outgoing calls are located on the right hand side. A call addition
is marked with blue while a deletion is marked with gray.
Remaining calls are marked with black. Figure 1 (bottom right)
is obtained by clicking on the glyph B. In Version 1.03 and the
previous version (not represented in the figure), Component A
invokes Component B, itself invoking Component C. The call
from B to D is new in Version 1.03. In the previous version, C
was calling B, but that call has been deleted in Version 1.03.

Source code differences are shown as a pop-up window
when hovering over a method glyph (Figure 3). We use the
same color convention as for the call differences to indicate
source code line addition and deletion.

F. Implementation

Our visualization is implemented in the Pharo programming
language, using the Roassal visualization engine [5]. We
use a code instrumentation profiling technique to collect the
method callees/callers. For measuring the execution time we
use Compteur, a tool that uses the number of messages sent
to estimate the execution time. Compared with other profilers
tools, Compteur has more replicable and deterministic execu-
tion time estimations which is useful to perform comparisons
across software versions [4].

IV. EXAMPLES

This section describes an application of our visualization
approach to address two performance failure issues. The first
example focuses on identifying performance and source code
evolution while the second example is related to performance
variation understanding. The two considered applications are
written in the Pharo programming language.
Example 1. Figure 4 offers an overview of the performance
evolution of the XML parsing library XMLSupport. The
benchmark parses a large XML file. It is executed over 19
consecutive versions (from Version 1.03 to Version 1.22).
XMLSupport has 76 classes and 974 methods.

Figure 4 shows two packages, XML−Parser and XML−Parser
−Parser. The library contains other packages, however they are
not listed since they have a total execution time share below
2%.
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Fig. 4. XMLSupport – versions 1.03 to 1.22

The matrix indicates a relevant fact from the source code
evolution: package XML−Parser−Parser is deleted in Version
1.06. According to the execution time of the packages, the
visualization suggests that the code from XML−Parser−Parser
has been moved to XML−Parser. This code migration leads to
a significant increase of execution time of the package XML
−Parser in Version 1.06, indicated in red. A mouse click has
expanded the package XML−Parser to list 8 classes belonging
to that package. The class XMLTokenizer is further expanded.

Some glyphs are missing which indicates that the component
is not used. For example, the class XMLParser is introduced in
the application or used by the benchmark only starting from
Version 1.12.

Figure 4 shows two performance regressions, introduced
by Version 1.16 and Version 1.17. This is indicated by two
visual cues: the height of the glyphs of the project XMLSupport
are increasing in Version 1.16 and 1.17 and the glyphs are
painted red. Package XML−Parser is changed in Versions 1.16
and 1.17, which causes the performance regressions. Version
1.16 modifies classes XMLTokenizer and XMLNestedStreamReader,
as indicated by their glyphs since both have a small top box.

Figure 5 shows the execution timelines of all components in
Version 1.16 and Version 1.17. Version 1.16 adds a new method
call from method basicNext to the method next of the class
XMLPeekableStreamAdapter, causing a performance regression.
This method call is highlighted with blue in Figure 5.

Version 1.17 modifies only the method nextName of the
class XMLTokenizer. By analyzing the source code difference of
this method (by passing the mouse over the method glyph),
we conclude that the modification adds a loop to check if
the characters of the XML tag name are valid, which also
forces multiple calls to the method atEnd. This situation is
illustrated by the execution timelines of the method atEnd,
depicted in Figure 5. The timelines give an overview on how the

Fig. 5. XMLSupport – Analyzing version 1.16 and version 1.17

method atEnd spends more execution time along the benchmark
execution.

Example 2. Figure 6 shows the performance evolution of
GraphET, a graph drawing library. GraphET has 36 classes
and 247 methods. As represented in the figure, Version 59
and 60 have been expanded. Overall, Version 59 is slower
than Version 58, as denoted with the red taint of the glyph
of GraphET. The class GETCompositeDiagram is modified as
indicated with the top box. Expanding the class reveals that
the method transElements has modified and is slightly slower
(the glyph is red and has a top box). We have clicked on
that method to show the call graph. Method transElements is
called by operateElements both in Version 58 and 59, since the
incoming arrow is black. In Version 59, transElements calls
getPixelsFromValue and heightOfPositiveArea, as indicated with
the two blue arrows. These new calls lead to a performance
degradation. A close look at the execution time frames of
these methods reveals two facts about Version 59: the new call
of getPixelsFromValue is costly as indicated by the time frame
panel; and the call to heightOfPositiveArea is relatively long. In

5



Fig. 6. GraphET – Analyzing versions 58 and 59

addition, note that there is no previous version of this method;
therefore we conclude that this method was created in the
same version. According to our previous study about profiling
software versions and mining performance regressions [25],
a considerable number of performance bugs and regressions
are related to loops and method call additions. Therefore, we
believe that the examples we presented above are representative
and meaningful.

V. EXPERIMENTAL DESIGN

We have designed an experiment to provide empirical
evidence of the benefits of our visualization for practitioners.

A. Baseline for Comparison

Our experiment compares the effect of the matrix of two
realistic tasks against a baseline. This baseline therefore defines
the control group of our experiment. We considered two
controls in our experiment: CCT and Merged-CCT.
Calling Context Tree (CCT). Many code execution profilers
across programming languages structure profiling information
as a calling context tree [34]. Each node of the tree represents
a method call in a particular calling context. A calling context
corresponds to the methods on the call stack just before to
execute the call: it is the chain of invoked methods from the
root method to the leaf method.
Merged Calling Context Tree (Merged-CCT). A few profilers,
including JProfiler and YourKit, are able to compare two
executions. A merged calling context tree (Merged-CCT) is
used for that purpose [1], [23]. Each node of the first tree is
merged with its equivalent node in the second tree. There are

a number of equivalence definitions [23]. For our experiment,
we used a common equivalence relation between CCT nodes
which is: two nodes are equivalent if they correspond to the
same method and have the same path to the root node.

B. Research Questions

Identifying performance variations. Our matrix has been
designed to reduce the effort in identifying performance
variations along a software history. In our experiment, we
formalize the notion of “effort” by measuring the correctness
and the time taken to identify performance variations. Our first
research question is therefore:

RQ1: Does the use of Performance Evolution Matrix
increase the correctness and reduce the time to
identify performance variations along a software history, com-
pared to source code and CCT-based profiler exploration
tools?

Understanding performance variations. Once these variations
have been identified, understanding the exact source code
change causing it is a relevant aspect to measure. The time taken
to correctly understand a variation is therefore a reliable metric
to measure the comprehension effort. Our second research
question is:

RQ2: Does the use of Performance Evolution Matrix
increase the correctness and reduce the time needed to identify
the source code changes that cause a performance variation,
compared to source code and CCT-based profiler exploration
tools?

C. Experimental Setup

Our experiment consists therefore in comparing three repre-
sentations of the performance history evolution: Performance
Evolution Matrix, CCT, and Merged-CCT.

Reducing bias and avoiding confounding factors are essential,
albeit difficult. For example, CCT is offered by JVisualVM,
and Merged-CCT by JProfiler. JVisualVM and JProfiler are two
large profiling platforms with many options. Both platforms
have a large scope in which monitoring performance evolution
is just a narrow slice of the offered features. For example, both
offer extended tool suites to monitor the memory consumption
or thread scheduling, which is outside the scope of our
experiment. To reduce bias while providing an experiment
setting that is practical and realistic, we have taken the
following decisions:

Pharo programming environment. We use a programming
environment, in which the three treatments (Matrix, CCT, and
Merged-CCT) are equally considered. The Pharo programming
environment is very light, when compared with Eclipse for
example. The tooling offered by Pharo has been trimmed
down to let the experiment participants solely use the tools
necessary to complete the tasks. We therefore hope to reduce
bias introduced by parts of the environment that are irrelevant
for our experiment.

Profiling tools. The standard Pharo profiler uses a CCT to
structure the profiling information. We will therefore use it
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TABLE I
PROJECT UNDER STUDY (ANON= AVERAGE NUMBER OF NODES IN THE

CALLING CONTEXT TREE, MD= MAXIMUM TREE DEPTH)

Project Packages Classes Methods LOC ANON MD

Roassal 22 698 3,492 31,949 504 36
Grapher 6 128 801 7,584 989 38
XML-Parser 27 596 4,901 37,454 259 22

in our experiment. The standard Pharo profiler ecosystem
originally does not provide a Merged-CCT. We therefore
implemented one for our experiment. Our implementation of
Merged-CCT is very similar to the one provided by JProfiler.
Each node of the Merged-CCT displays three metrics: absolute
time difference, method context (local) variation, and global
variation.
Supplementary tools. We also provide participants two standard
tools: a code browser, which allows them review the source
code of a particular software version, and a source code
difference, which indicates source code differences at the
method level.

D. Projects and Versions Under Study

We picked three Pharo applications for which performance
is seriously considered by the community behind these appli-
cations: Roassal, Grapher, and XML-Parser. Table I gives the
number of packages, classes, methods and lines of code of
these projects. The projects used in our study are considered
by the Pharo community as being medium sized. In the case
of XML-Parser and Roassal, they have a relatively similar
number packages, classes, methods and lines of code, while
the Grapher application is smaller.
Project versions. Five software versions were artificially and
manually created for each of the three applications of our
study, three versions introduce a performance regression and
one a performance improvement. The changes are inspired from
real code changes causing performance variations [27]. The
changes we introduced are equivalent in their complexity across
the applications. Each version contains five modified methods
causing either a performance improvement or a regression.
Note that the number of versions, the source code changes,
and their size have been tuned in such a way that the tasks do
not take too long for the participants to complete.
Benchmarks. For each application we identified a representa-
tive benchmark from those provided by the application authors.
Each benchmark reflects a typical usage of the program using
a large input set. The depth of CCTs generated by these
benchmarks ranges from 22 to 38, and the number of nodes
of CCTs in all five versions vary from 259 to 989 on average
(ANON, Table I). This depth is comparable with other average
stack depths of Java systems [23].

E. Tasks

We designed two tasks to answer the two research questions
as described in Table II. Task T1 emphasizes relating source
code and performance evolution. For a given application and

TABLE II
TASKS

T1

Concern: Contrasting multiple performance variations across multiple
software versions
Description: The participant identifies and lists the methods that were (i)
modified in more than one version and (ii) changed its performance after
each modification (greater than 2% regarding the total execution time).
Rationale: It has been shown that great portion of source code changes that
cause a performance variation have direct impact in the performance of the
modified method [27]. Therefore, identifying and contrasting methods that
change source code and performance in the same version are promising
candidates for further analysis. Comparing multiple performance variations
is useful for understanding how source code changes are affecting perfor-
mance and which components are involved along software evolution.

T2

Concern: Understanding the roots of performance variations
Description: The participant identifies the source code changes that cause a
performance variation (greater than 2% regarding the total execution time)
and explains how these changes affect software performance. For each
source code change the participant indicates which methods and classes
were involved and in which version the change was introduced.
Rationale: Identifying the root cause of a performance variation, practi-
tioners may avoid unnecessary performance regressions, improve their self
awareness about changes that affect program performance, and make more
informed change decisions.

TABLE III
PARTICIPANTS’ EXPERIENCE AND TASK ASSIGNMENT

(DEV.=DEVELOPMENT, P.I.= PERF. ISSUES, P.T.= PERF. TOOLS)

ID Occupation Task Experience (years)
T1 T2 Dev. P.I. P.T. Pharo

P1 PhD. Student X X 12 11 8 8
P2 Master Student X X 5 4 4 4
P3 PhD. Student X X 5 0.5 0.5 3
P4 Soft. Developer X X 10 4 1 4
P5 Master Student X 2 2 1 0.5
P6 PhD. Student X 7 0 0 0
P7 PhD. Student X X 3 1 4 5
P8 PhD. Student X 10 1 1 4
P9 Soft. Developer X 6 0 0 0
P10 PhD. Student X X 6 5 6 3
P11 Soft. Developer X 10 10 10 5
P12 Undergrad Student X 2 0 0 0

visualization, each participant identifies in the five software
versions methods that have both (i) their source code modified
and (ii) execution time changed. Task T2 focuses on a single
version. For a given application version and analyzing tool, each
participant explains and details the root cause of a performance
variation. The result of T1 and T2 will be used to answer the
research questions RQ1 and RQ2, respectively. Both tasks
are executed using the three treatments, each one with a
different application. Each execution uses a distinct and random
application and treatment. Overall, these two variables are
equally distributed. Randomizing the task execution is relevant
to reduce any possible learning effect.

F. Participants

In total, 12 developers participated in our experiment,
including 8 postgraduate students, 3 software engineers, and 1
undergraduate student (Table III). We picked these participants
because they had experience Pharo, since the projects under
study are implemented in this programming language. Their
experience in software development ranges from 2 to 12 years,
with a median of 6 years.
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G. Work Session

The session of each participant is structured as follows:

1) Preliminary questions – We first ask the participants
to indicate their current occupation and their Pharo
experience.

2) Learning material – Since we cannot make any assump-
tion about the knowledge of each participant, we provide
a description of the three treatments (CCT, Merged-CCT,
Matrix) and the supplementary tools. Each item of our
material is illustrated with an example. During the reading
of the material, participants are encouraged to experiment
with a small toy application in order to get familiar with
the tools and ask clarifying questions.

3) T1 – The core of the experiment consists of completing
T1, three times, each time using a different treatment
(Matrix, CCT, and Merged-CCT) and a different appli-
cation (Roassal, Grapher, XML-Parser)

4) T2 – Since this task requires a deeper knowledge,
only participants with a solid background in the Pharo
programming language and self-confidence in understand-
ing performance-related issues were requested to solve
Task T2. Only six participants perform Task T2, each
one having more than 3 years of experience in Pharo.
Similarly to T1, each participant completed T2 three
times, across treatments and applications.

5) Feedback – We request feedback about their experience
using the three tools.

H. Data Collection

The following data is collected:

• Completion Time. We monitor the time needed for the
participants to complete each task and treatment.

• Interaction Events. We collect the number of mouse
clicks and mouse movements. Monitoring the interaction
between a participant with the mouse is a reliable proxy
of how much the participant is interacting with the
visualization in general [11], [16].

• Behavior. We observe the participant interaction during
the working sessions.

• Correctness. We know the correct answers of each task
for each project. Note that the result is a set of methods
for Task T1 and a set of source code changes for Task
T2. We measure the precision and recall of these sets.

I. Pilot Study

We conducted a pilot study with a software developer
with strong experience in software engineering, software
performance, and source code evolution. We asked him to
resolve the two tasks using the three tools: CCT, Merged-CCT,
and Matrix. The pilot helped us to improve the tutorial and
the task descriptions. The pilot also indicated that the tasks
may be completed in a reasonable amount of time. Note that
in the experiment, we do not enforce any time restriction.

VI. RESULTS

A. RQ1: Identifying Performance Variations

Research Question 1 (Section V-B) is about measuring
performance variations along multiple software versions and
relates to Task T1. Table IV reports participants’ results.
Precision and recall. Overall, participants perform well. With
the CCT representation (i.e., what most code execution profilers
output), participants have an average precision of 89% and a
recall of 83%. With the Merged-CCT representation (i.e., as
JProfiler and YourKit output), participants perform better, with
an average precision of 95% and a recall of 91%. With the
Matrix, participants obtained 100% of precisions and 98% of
recall. However, the difference in the recall and precision to
complete Task T1 is not statistical significant (Kruskal-Wallis
test3, p = 0.3365 for precision and p = 0.1318 for recall).
Completion time. On average, participants were about 3
times faster using Matrix than the two other treatments. The
Kruskal-Wallis test coupled with the Post-Hoc Dunn’s Multiple
Comparison Test indicate that the time to complete T1 using our
Matrix is significantly shorter than using CCT or Merged-CCT
(p < 0.0001); and there is no significant difference between
CCT and Merged-CCT.
Mouse interaction. Participants made fewer clicks with the
matrix than the two other treatments. On average, participants
clicked 126 times using the Matrix, 523 times with the CCT,
and 396 times with Merged-CCT. Similarly, participants moved
the mouse about 6 times less when performing the task with
the Matrix. The Kruskal-Wallis test coupled with the Post-Hoc
Dunn’s Multiple Comparison Test indicate that the number
of clicks and the mouse movement is significantly less using
Matrix than using CCT and Merge-CCT (p < 0.0001, for both
the movement and clicks); and there is no significant difference
between CCT and Merge-CCT.

B. RQ2: Understanding Performance Variations

RQ2 is about identifying the method modification causing a
performance variation in each software version and relates to
Task T2. Table V gives the results.
Precision and recall. Similar to Task T1, participants per-
formed well, with a precision greater than 92% and a recall
greater than 83%. From the three treatments, Merged-CCT
produced the best results with a precision of 97% and a recall of
100%, however these differences are not statistically significant.
(Kruskal-Wallis test, p > 0.9999 for precision and p = 0.1841
for recall).
Completion time. Merged-CCT performed slightly better than
the two other treatments, however, this difference is not
significant (Kruskal-Wallis test, p = 0.6680).
Mouse interaction. Similarly to Task T1, participants had to
use the mouse much less with the Matrix than with the two
other treatments: 255 mouse clicks on average for the Matrix

3Kruskal-Wallis is a rank-based nonparametric test useful to determine if
there are statistically significant differences. It is suitable since we have less
than 30 points in our dataset.
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TABLE IV
PARTICIPANTS RESULTS FOR TASK T1 (PREC. = PRECISION, MC = MOUSE CLICKS, MM = MOUSE MOVEMENTS, TIME = MINUTES)

ID Calling Context Tree Merged Calling Context Tree Performance Evolution Matrix
Prec. Recall MC MM Time Prec. Recall MC MM Time Prec. Recall MC MM Time

P1 100 100 358 10,766 16 100 100 308 10,054 14 100 100 52 2,693 5
P2 100 100 678 19,209 20 100 100 478 16,020 18 100 100 86 2,002 7
P3 100 67 378 8,906 12 100 100 338 9,920 16 100 100 100 2,888 5
P4 100 75 430 10,903 14 100 100 480 13,668 20 100 100 112 3,093 8
P5 100 100 358 12,324 14 100 100 232 8,623 15 100 100 144 2,600 4
P6 100 100 444 12,950 19 100 80 238 7,508 13 100 100 136 3,301 4
P7 100 100 504 15,428 14 100 100 306 10,313 11 100 100 126 4,131 8
P8 25 33 418 14,057 17 40 50 234 9,503 17 100 80 158 3,554 6
P9 100 50 562 16,639 27 100 100 902 28,249 42 100 100 184 4,957 6
P10 100 100 988 15,500 21 100 60 232 7,790 16 100 100 108 3,138 5
P11 40 67 732 21,721 29 100 100 776 22,081 28 100 100 184 3,224 8
P12 100 100 424 12,764 13 100 100 226 8,368 13 100 100 126 17 5

median 100 100 437 13,504 17 100 100 307 9,987 16 100 100 126 3,116 6
mean 89 83 523 14,264 18 95 91 396 12,675 19 100 98 126 2,967 6

TABLE V
PARTICIPANTS RESULTS FOR TASK T2 (PREC. = PRECISION, MC = MOUSE CLICKS, MM = MOUSE MOVEMENTS, TIME = MINUTES)

ID Calling Context Tree Merged Calling Context Tree Performance Evolution Matrix
Prec. Recall MC MM Time Prec. Recall MC MM Time Prec. Recall MC MM Time

P1 100 100 1,054 30,596 39 100 100 416 15,416 26 100 100 138 2,124 21
P2 100 100 1,264 29,897 48 100 100 578 16,271 44 100 100 414 6,005 45
P3 100 100 492 11,563 23 80 100 670 14,610 28 100 100 138 3,647 20
P4 100 50 488 12,210 20 100 100 392 16,266 26 50 50 282 5,379 26
P7 100 75 826 28,120 26 100 100 386 12,452 16 100 75 238 5,052 28
P10 60 75 884 23,949 31 100 100 402 13,224 17 100 75 318 3,493 28

median 100 88 855 62,035 29 100 100 409 15,013 26 100 88 260 4,350 27
mean 93 83 835 22,723 31 97 100 474 14,707 26 92 83 255 4,283 28

versus 835 clicks and 474 clicks, for CCT and Merged-CCT,
respectively. These differences are significant (Kruskal-Wallis
test, p < 0.0003).

C. Participant Feedback

Matrix Layout. All participants argue that the layout and the
glyph components are useful for comparing multiple executions
across software versions, which is beneficial to solve Task T1.

Calling Context and Participants. Since most of them are
used to use calling context based tools, participants concern
was that the Matrix does not provide the calling context
of method calls. However, this does not affect the ability
of participants in identifying and understanding performance
variations. In addition, participants find that the color mapping
for highlighting the call graph difference was useful to compare
versions.

Execution Time Frames. Participants manifest that the callee
and caller information together with the execution time frame
is useful to understand the roots of the performance variations.
However, they also mention that the execution time frame
panels were difficult to understand at the beginning, mostly
because it visualizes the participation of a method during the
execution in a different way than traditional profiling tools.
However, participants use this panel mainly to confirm some
hypotheses they have about the roots of a performance variation.
For instance, when a new method call is added at some point

in the execution, this fact is reflected in the execution time
frame panel, as we can see in Figure 2.

VII. DISCUSSION

Like all experimental designs, our experiment is subject to
some threats to validity [32].

A. Construct Validity

Our experiment has a within-subject design, i.e., participants
have three exercises both for Task T1 and Task T2. A within-
subject setting helps in coping with a reduced amount of
participants, as it is frequently needed when assessing a
software engineering population (due to the cost in time
and resources to carry out the experiment). We took care
to randomize each task to avoid learning effects.

We conducted our experiment in the Pharo programming
languages. We used this language for practical reasons: the
Pharo reflective API allows one to easily run multiple bench-
marks over a large set of software revisions, without incurring
a measurable bias [25], [27]. Our visualization is not tied to
Pharo: for example, it does not rely on a language construct only
provided by Pharo. We do not see any technical obstacles in
conducting our experiment in another programming language.

B. Internal Validity

This threat concerns the factors that may influence the
treatments effects on the dependent variables.
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Tasks. Although we carefully justify the rationale of each
program comprehension task, the choice of tasks may bias the
results in favor or against the Performance Evolution Matrix.
We believe that the matrix layout may represent an advantage in
Task T1; however participants were more familiar with the CCT-
based tools, which represents an advantage when performing
both tasks. The Performance Evolution Matrix removes part of
the calling context information by showing only the calls and
callers of a particular method at a time. Although participants
missed the CCT to solve the Task T2, they were able to resolve
this task comparable time, precision, and recall.
Learning effect. There is a potential learning effect in between
working sessions; the experience of participant about addressing
performance issues increases along each session. To alleviate
this threat, the order in which the tools and projects were
evaluated was assigned randomly.
Projects Size. The size of the projects and the number of
versions could influence the results. We addressed this threat
by randomly assigning the projects for each working session.
Each combination of (treatment, application) has been used
the same number of times.
Experimental fatigue. Analyzing the source code changes
between two software versions could be a tedious and time-
consuming activity. Therefore, participants may get tired along
the session. We addressed this threat by controlling the number
of versions and the number of source code changes between
versions. We considered five different versions for each appli-
cation and each versions contains five method modifications.
This apparently small amount of code modification is key to
keeping time below two hours. In the experiment, we do not
enforce any time restriction, besides that all participants could
finish the tasks in a reasonable time, no greater than 2 hours.
Pharo Experience. Code profiling is an activity that requires
a solid understanding of the underlying program infrastructure
at runtime. Therefore, the degree of experience in the Pharo
programming language could bias the results of Task T2. To
mitigate this threat, we exclude novice programmers from
our experiment since a profiling activity is likely to be
considered by experienced practitioners. Since Task T2 required
a deeper knowledge, only participants with a solid background
in the Pharo programming language and self-confidence in
understanding performance related issues were requested to
solve Task T1 and T2. All these participants had more than 3
years of experience in Pharo.

C. External Validity
This refers to the generalizability of the experiment results.

Participants. This concerns that, of all software developers,
participants are not representative of the population. We tried
to mitigate this threat by having a pool of different participants,
which includes graduate students and professional engineers.
Software applications. We used three software applications for
our experiment. These applications are well-known within the
Pharo community and are considered as relatively large (when
compared to the majority of Pharo applications). Moreover,

these applications are central to several sub-communities.
Although it may be that our results are tied to the software
applications we have chosen in our experiment, we have not
spotted any indicator that would support this.

Scalability. Like other visualization techniques, our approach
may be subject to scalability issues for some scenarios. The
screen size may affect the navigability of our visualization
approach. The height and width of our approach depend on
the number of versions and software components.

Programming Language. Our experiment focused on Pharo
applications. We cannot be sure of how much the results
generalize to other software projects in other programming
languages.

Precision and recall. Table IV and Table V report high
precision and recall. Two reasons are possibles: either our
tasks are not representative of the difficulties encountered by
practitioners, or the participants carefully checked for their
answers. Our setting did not impose a time limit, so participants
where careful when reporting their answers.

D. Conclusion Validity

This threat concerns the statistical analysis of the results. The
results of the 12 participants for Task T1 indicate that Matrix
leads to a better precision and recall. However, this difference
is not significant. Similarly, participants are slightly slower at
completing Task T2. Having a larger pool of participants may
result in significant differences.

VIII. CONCLUSION

In this paper, we propose an interactive visualization to
compare multiple performance variations caused along a set of
software versions. We present a controlled experiment to show
viability of our approach when identifying and understanding
performance regressions and improvements. Our results show
that participants are statistically significant faster using our
visualization at spotting methods with a performance and source
code variation compared to other traditional tools. In addition,
participants perform about as well as traditional tools when
studying the sources of performance problems. Our visualiza-
tion technique is not meant to replace traditional representations,
but to provide a specialized tool when comparing performance
variations along multiple software versions.
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